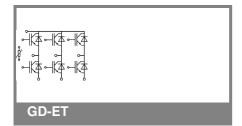


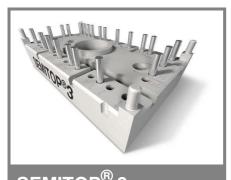
IGBT Module

SK15GD126ET

Preliminary Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor


Typical Applications*

Inverter

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified							
Symbol	Conditions		Values	Units			
IGBT							
V_{CES}	T _j = 25 °C		1200	V			
I _C	T _j = 150 °C	T _s = 25 °C	22	Α			
		T_s = 80 °C	15	Α			
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		30	Α			
V_{GES}			± 20	V			
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs			
Inverse Diode							
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	25	Α			
		$T_s = 80 ^{\circ}C$	17	Α			
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		30	Α			
Module							
I _{t(RMS)}				Α			
T_{vj}			-40 + 150	°C			
T _{stg}			-40 +125	°C			
V _{isol}	AC, 1 min.		2500	V			

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.6$ mA		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,1	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA
		T _j = 125 °C				nA
V_{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9		V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		47	60	mΩ
		T _j = 125°C		73		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 15 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,1	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,2		V
C _{ies}				1,1		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,058		nF
C _{res}				0,048		nF
$t_{d(on)}$				85		ns
t _r	$R_{Gon} = 40 \Omega$	$V_{CC} = 600V$		30		ns
E _{on}		I _C = 15A		2		mJ
^t d(off)	$R_{Goff} = 40 \Omega$	T _j = 125 °C		430		ns
t _f		V _{GE} =±15V		90		ns
E _{off}				1,8		mJ
$R_{th(j-s)}$	per IGBT				1,6	K/W

SEMITOP® 3

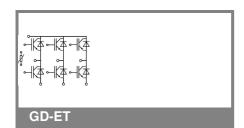
IGBT Module

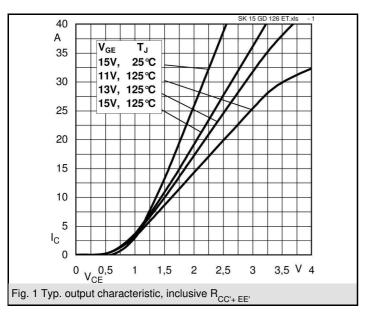
SK15GD126ET

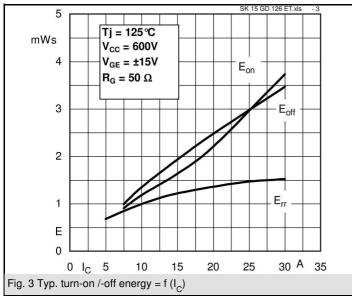
Preliminary Data

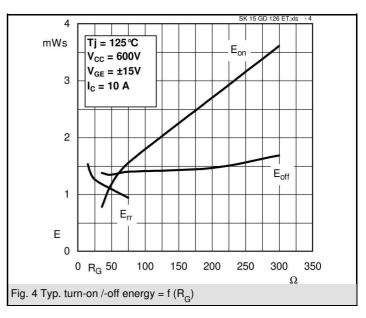
Features

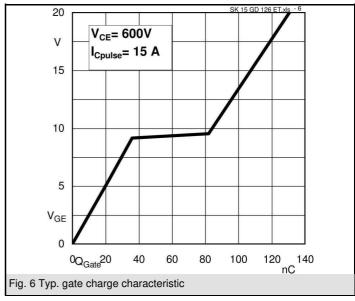
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

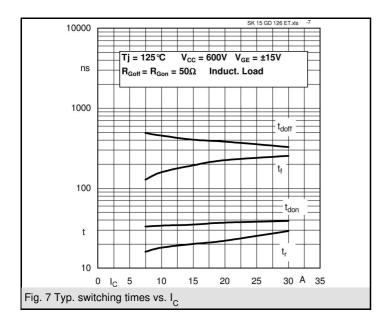

Typical Applications*

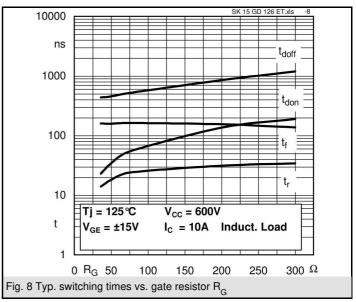

Inverter

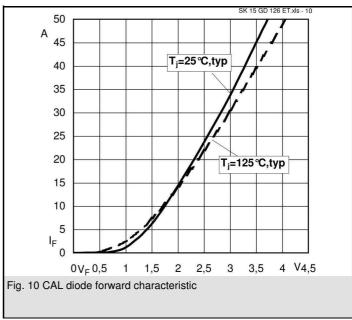

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	iode						
$V_F = V_{EC}$	I_{Fnom} = 15 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,6	1,8	V	
		T_j = 125 °C _{chiplev} .		1,6		V	
V _{F0}		T _j = 25 °C		1	1,1	V	
		T _j = 125 °C		0,8		V	
r _F		T _j = 25 °C		40	47	mΩ	
		T _j = 125 °C		53		$m\Omega$	
I _{RRM}	I _F = 15 A	T _j = 125 °C		21		Α	
Q_{rr}	di/dt = -570 A/µs			3,5		μC	
E _{rr}	V _{CC} = 600V			1,4		mJ	
$R_{th(j-s)D}$	per diode				2,1	K/W	
M_s	to heat sink		2,25		2,5	Nm	
w				30		g	
Temperature sensor							
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω	

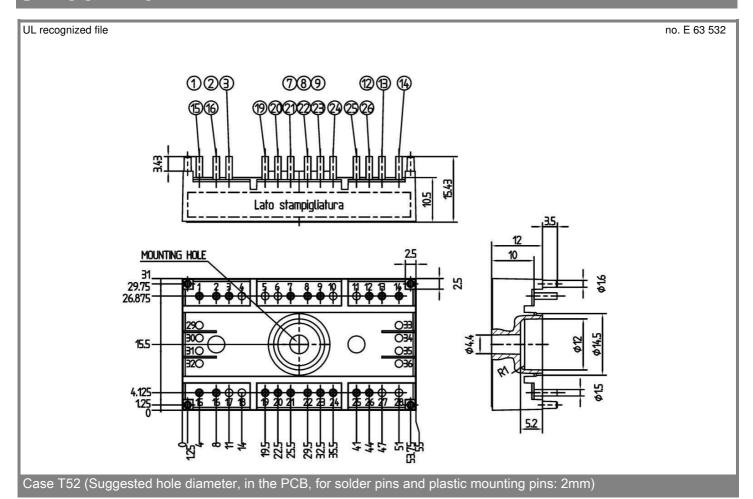

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

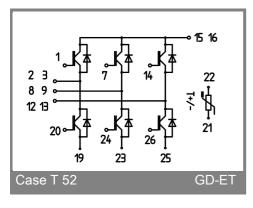

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











4 21-02-2007 SCT © by SEMIKRON

5 21-02-2007 SCT © by SEMIKRON