

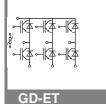
SEMITOP[®] 3

IGBT Module

SK25GD126ET

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Inverter

Absolute	Maximum Ratings	T _s =	25 °C, unless otherwise s	pecified
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 150 °C	T _s = 25 °C	32	А
		T _s = 80 °C	23	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		50	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse D	liode			
I _F	T _j = 150 °C	T _s = 25 °C	28	А
		T _s = 80 °C	19	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		50	А
Module				
I _{t(RMS)}				А
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 $^\circ\text{C},$ unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	_						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,15	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1	1,2	V	
		T _j = 125 °C		0,9		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		28	36	mΩ	
		T _j = 125°C		44		mΩ	
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,1	V	
		T _j = 125°C _{chiplev.}		2,2		V	
C _{ies}				1,8		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,095		nF	
C _{res}				0,082		nF	
t _{d(on)}				85		ns	
t,	R _{Gon} = 25 Ω	V _{CC} = 600V		30		ns	
É _{on}		I _C = 25A		3,3		mJ	
t _{d(off)}	R_{Goff} = 25 Ω	T _j = 125 °C		430		ns	
t _f		V _{GE} =±15V		90		ns	
E _{off}				3,1		mJ	
R _{th(j-s)}	per IGBT				1,2	K/W	

© by SEMIKRON

SEMITOP[®] 3

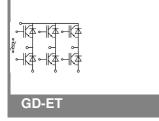
IGBT Module

SK25GD126ET

Preliminary Data

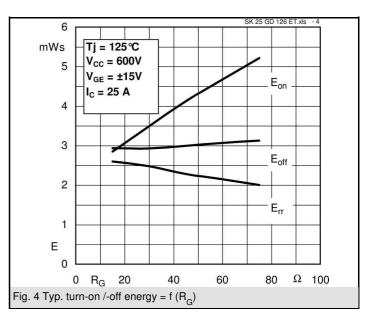
Features

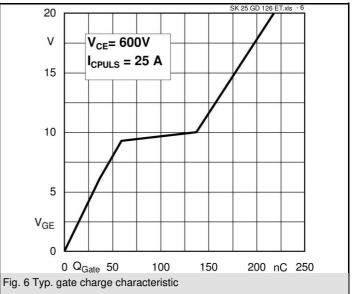
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

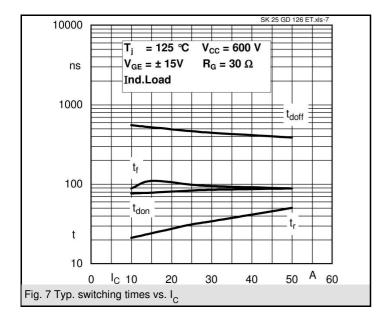

Typical Applications*

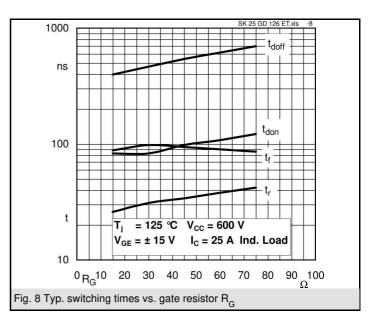
Inverter

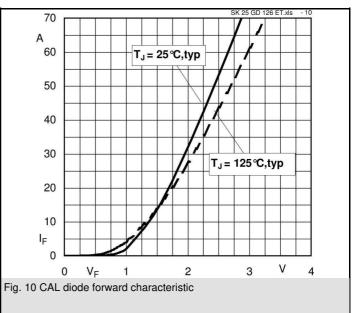

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	liode					
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V			1,8		V
		T _j = 125 °C _{chiplev.}		1,8		V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,8		V
r _F		T _j = 25 °C		32	42	mΩ
		T _j = 125 °C		40		mΩ
I _{RRM}	I _F = 25 A	T _j = 125 °C		31		А
Q _{rr}	di/dt = -950 A/µs			5		μC
Err	V _{CC} = 600V			2,1		mJ
$R_{th(j-s)D}$	per diode				1,9	K/W
M _s	to heat sink		2,25		2,5	Nm
w				30		g
Temperat	ture sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω

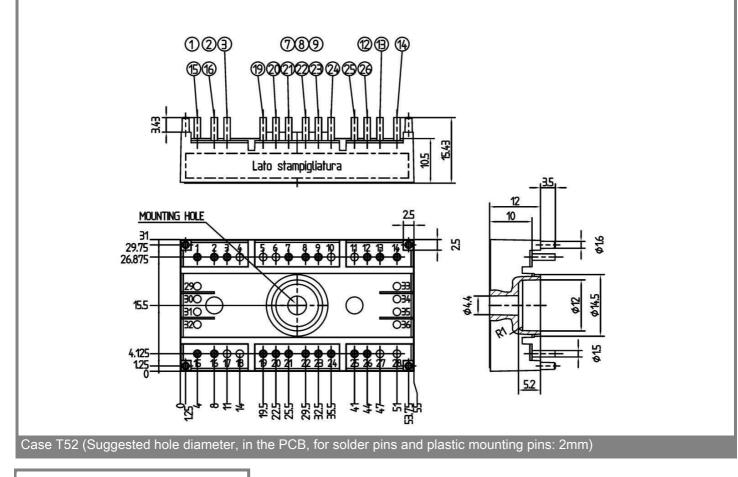

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

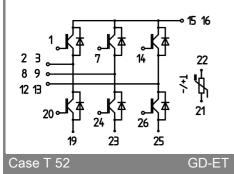

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











UL recognized file

no. E 63 532

