SK 35 TAA

SEMITOP®2

Two separated thyristors

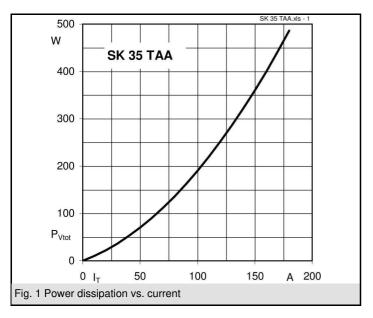
SK 35 TAA

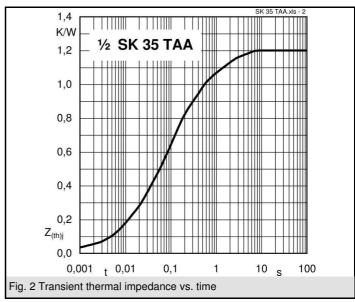
Target Data

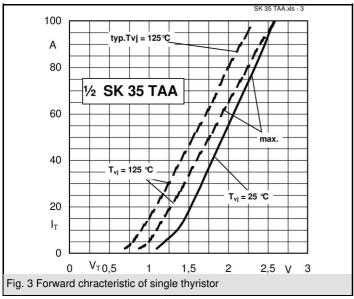
Features

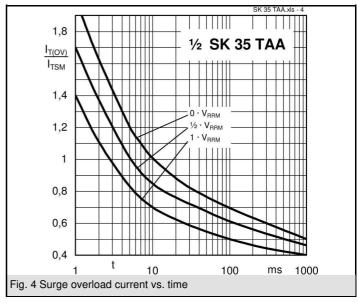

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
- Up to 1600 reverse voltage
- High surge currents

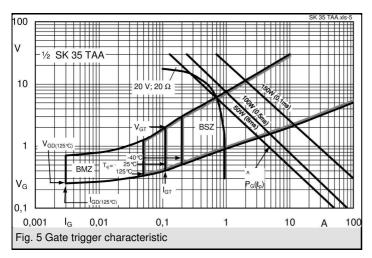
Typical Applications*

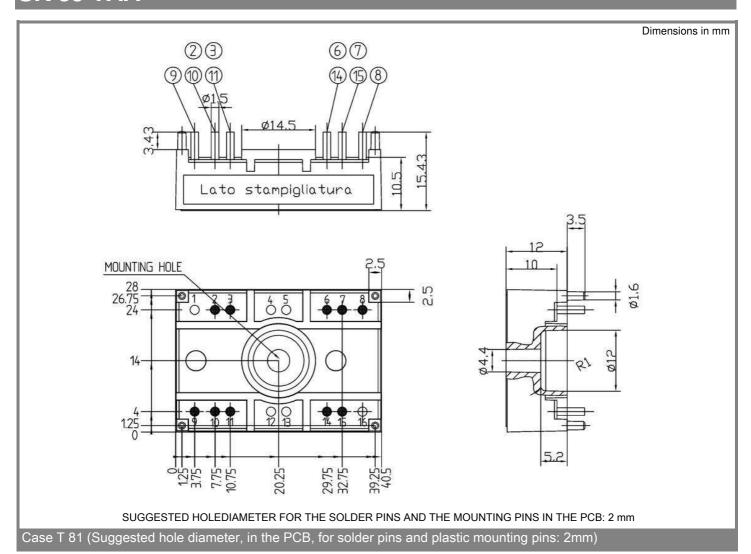

- Brake chopper
- Soft starters

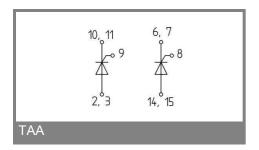

V _{RSM} V	V _{RRM} , V _{DRM}	I _T = 35 A (T _s = 80 °C)
900	800	SK35TAA08
1300	1200	SK35TAA12
1700	1600	SK35TAA16


Characteristics		Ts = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
I _T	Ts = 100°C	23	Α	
I _T	Ts = 80°C	35	Α	
			Α	
I _{TSM} /I _{FSM}	T _{vj} = 25 (125) °C; 10 ms	450 (380)	Α	
I²t	$T_{vj} = 25 (125) ^{\circ}\text{C}$; half sine wave, 10 ms	1000 (720)	A²s	
T _{stg}		-40 + 125	°C	
T _{solder}	terminals, 10 s	260	°C	
Thyristor		<u> </u>	•	
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs	
(di/dt) _{cr}	T _{vj} = 125 °C; f = 50 60 Hz	50	A/µs	
t_q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	120	μs	
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	80 / 150	mA	
I _L	$T_{vi} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ. / max.}$	150 / 300	mA	
V _T	$T_{vi} = 25 ^{\circ}\text{C}; (I_T = 75 \text{A}); \text{max}.$	1,9	V	
V _{T(TO)}	T _{vi} = 125 °C	max. 0,85	V	
r _T	T _{vi} = 125 °C	max. 9,1	mΩ	
I _{DD} ; I _{RD}	T_{vj}^{vj} = 125 °C; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 10	mA	
R _{th(j-s)}	cont. per thyristor	1,2	K/W	
T _{vi}		-40 +130	°C	
V _{GT}	T _{vi} = 25 °C; d.c.	3	V	
I _{GT}	$T_{vi}^{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	100	mA	
V _{GD}	$T_{v_i}^{v_i}$ = 125 °C; d.c.	0,25	V	
I _{GD}	T_{vi}^{yj} = 125 °C; d.c.	3	mA	
Diode				
V_{F}	$T_{vi} = {^{\circ}C}; (I_F = A); max.$		V	
V _(TO)	T _{vi} = °C		V	
r _T	$T_{vi}^{'j} = {^{\circ}C}$		mΩ	
I _{RD}	$T_{vj}^{3} = {^{\circ}C}; V_{RD} = V_{RRM}$		mA	
R _{th(j-s)}			K/W	
T _{vj}			°C	
Mechanical data				
V _{isol}	AC 50Hz, r.m.s. 1min (1sec)	2500 (3000)	V	
M ₁	mounting torque	2	Nm	
w		19	g	
Case	SEMITOP®2	T 81		




SK 35 TAA





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.