

SEMITOP[®] 4

IGBT Module

SK75MLI066T

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

• Multi level inverter

Remarks

- V_{isol} = 3000V AC,1s,50Hz
 Dynamic measure: DUT= IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

Absolute Maximum Ratings			T_s = 25 °C, unless otherwise specified				
Symbol	Conditions			Values	Units		
IGBT							
V _{CES}	T _j = 25 °C			600	V		
Ι _C	T _j = 175 °C	T _s = 25 °C		83	А		
		T _s = 70 °C		67	A		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			150	А		
V_{GES}				± 20	V		
t _{psc}	V_{CC} = 360 V; V_{GE} \leq 20 V; VCES < 600 V	T _j = 125 °C		6	μs		
Inverse	Diode				•		
I _F	T _j = 175 °C	T _s = 25 °C		92	А		
		T _s = 70 °C		73	A		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			150	А		
Freewh	eeling Diode						
۱ _F	T _j = 175 °C	T _s = 25 °C		92	А		
		T _s = 70 °C		73	А		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			150	А		
Module	_						
I _{t(RMS)}					А		
T _{vj}				-40 +175	°C		
T _{stg}				-40 +125	°C		
V _{isol}	AC, 1 min.			2500	V		

Characteristics T _s =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1.2 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _i = 25 °C			0,0038	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _i = 25 °C			600	nA
V _{CE0}		T _i = 25 °C		0,8	1,1	V
		T _i = 150 °C		0,7	1	V
r _{CE}	V _{GE} = 15 V	T _i = 25°C		8	10	mΩ
		T _j = 150°C		13	14	mΩ
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V
		T _j = 150°C _{chiplev.}		1,65	2,05	V
C _{ies}				4,7		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,3		nF
C _{res}				0,145		nF
Q_{G}	V _{GE} =-7V+15V			650		nC
R _{Gint}	T _j = 150 °C			4		Ω
t _{d(on)}				97		ns
t,	$R_{Gon} = 4 \Omega$	V _{CC} = 300V		34		ns
E _{on}	di/dt = 4100 A/µs	I _C = 75A		1,7		mJ
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 150 °C		339		ns
t _f	di/dt = 4100 A/µs	V _{GE} =-7/+15V		65		ns
E _{off}				2,8		mJ
R _{th(j-s)}	per IGBT			0,75		K/W

MLI-T

SEMITOP[®] 4

IGBT Module

SK75MLI066T

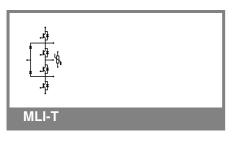
Preliminary Data

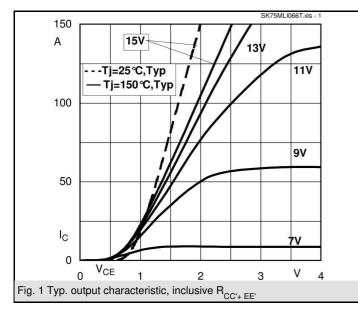
Features

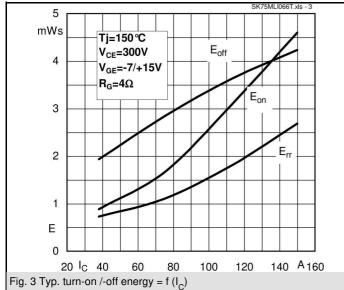
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

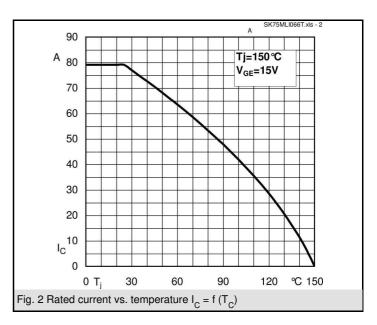
Typical Applications*

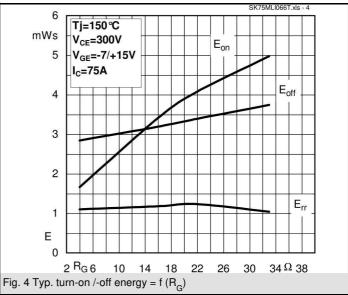
Multi level inverter

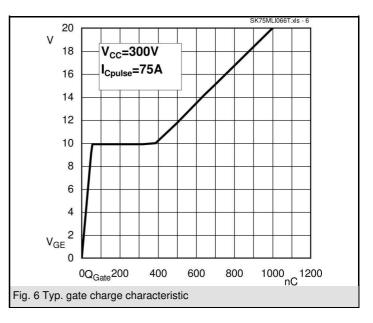

Remarks

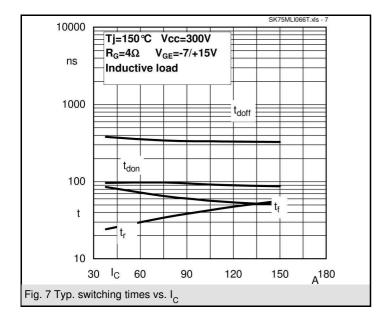

- V_{isol} = 3000V AC,1s,50Hz
- Dynamic measure: DUT= IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

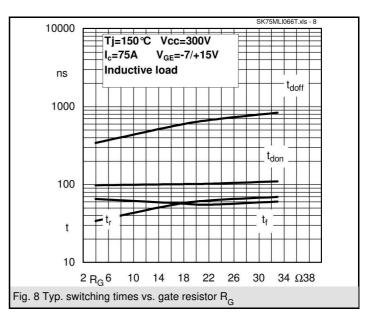

Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I _{Fnom} = 75 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,5	1,7	V
		T _j = 150 °C _{chiplev.}		1,5	1,7	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		6,7	8	mΩ
		T _j = 150 °C		8	9,3	mΩ
I _{RRM}	I _F = 75 A	T _j = 150 °C		65		Α
Q _{rr}	di/dt = 4100 A/µs			4		μC
E _{rr}	V _R = 300V			1,1		mJ
R _{th(j-s)D}	per diode			1,2		K/W
Freewhee	eling Diode (Neutral (Clamp Diode)				
$V_F = V_{EC}$	I _{Fnom} = 75 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,5	1,7	V
		T _j = 150 °C _{chiplev.}		1,5	1,7	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		6,7	8	V
		T _j = 150 °C		8	9,3	V
I _{RRM}	I _F = 75 A	T _j = 150 °C		65		А
Q _{rr}	di/dt = 3100 A/µs			4		μC
E _{rr}	V _R =300V			1,1		mJ
R _{th(j-s)FD}	per diode			1,2		K/W
M _s	to heat sink		2,5		2,75	Nm
w				60		g
Temperat	ture sensor					•
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω

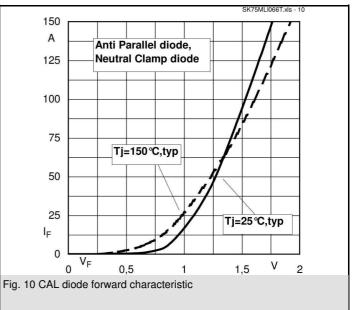

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

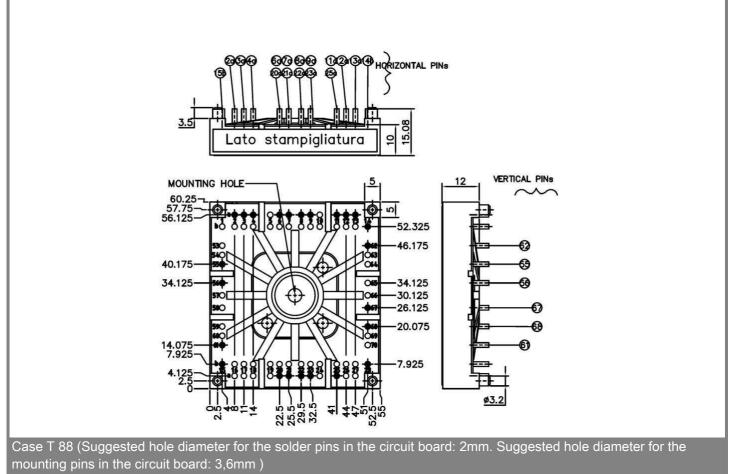

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











4

UL recognized

file no. E 63 532

