

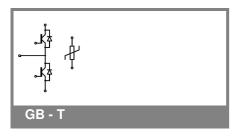
SEMITOP[®] 3

IGBT Module

SK80GB125T

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonding Aluminium Nitride ceramic (DBC)
- High short circuit capabilityLow tail current with low
- temperature dependence

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute	Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified					
	Conditions		Values	Units		
IGBT						
V _{CES}	T _j = 25 °C		1200	V		
I _C	T _j = 125 °C	T _s = 25 °C	85	Α		
		T _s = 80 °C	55	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		150	А		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C	10	μs		
Inverse D	liode					
I _F	T _j = 150 °C	T _s = 25 °C	90	А		
		T _s = 80 °C	60	А		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	А		
Module						
I _{t(RMS)}				А		
T _{vj}			-40 +150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	_						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 3 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,01	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			480	nA	
V _{CE0}		T _j = 25 °C		1,4	1,9	V	
		T _j = 125 °C		1,7	2,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C			18,6	mΩ	
		T _j = 125°C			20	mΩ	
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		3,2	3,3	V	
		T _j = 125°C _{chiplev.}		3,85	3,7	V	
C _{ies}				5,1		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,72		nF	
C _{res}				0,38		nF	
t _{d(on)}				180		ns	
t _r	R _{Gon} = 8,2 Ω	V _{CC} = 600V		110		ns	
E _{on}	D	I _C = 80A		9,9		mJ	
t _{d(off)}	R _{Goff} = 8,2 Ω	T _j = 125 °C		358		ns	
t _f		V _{GE} =±15V		26		ns	
E _{off}				5		mJ	
R _{th(j-s)}	per IGBT				0,32	K/W	

SEMITOP[®] 3

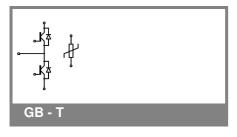
IGBT Module

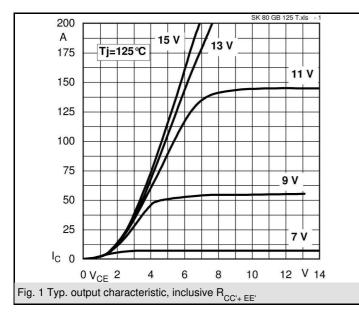
SK80GB125T

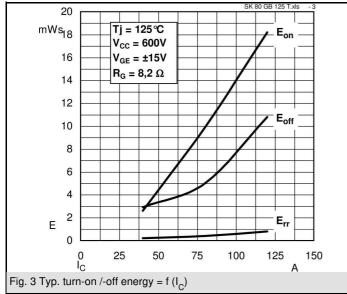
Preliminary Data

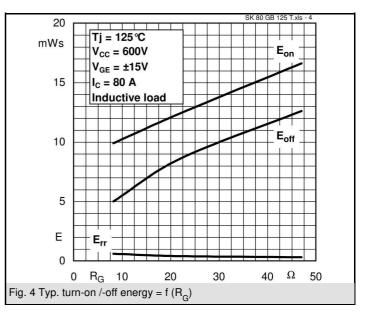
Features

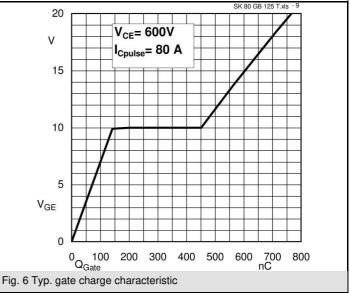
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonding Aluminium Nitride ceramic (DBC)
- High short circuit capability
- Low tail current with low temperature dependence


Typical Applications*


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 55 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V		
		T _j = 150 °C _{chiplev.}		1,8		V		
V _{F0}		T _j = 25 °C				V		
		T _j = 125 °C		1,2		V		
r _F		T _j = 25 °C				mΩ		
		T _j = 125 °C		11		mΩ		
I _{RRM}	I _F = 50 A	T _i = 125 °C		40		А		
Q _{rr}	di/dt = -800 A/µs			8		μC		
E _{rr}	V _{CC} = 600V			1		mJ		
R _{th(j-s)D}	per diode				0,65	K/W		
M _s	to heat sink		2,25		2,5	Nm		
w				30		g		
Temperat	ture sensor							
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

