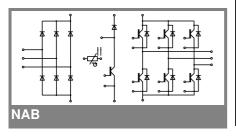


MiniSKiiP®3

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 37NAB066V1

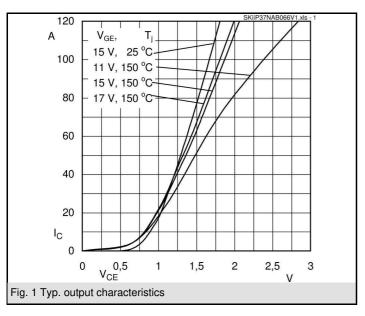
Preliminary Data

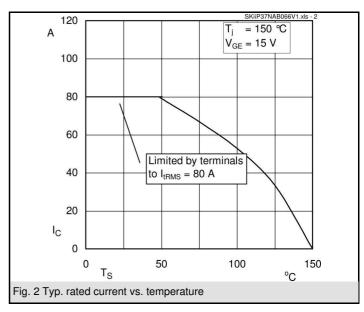
Features

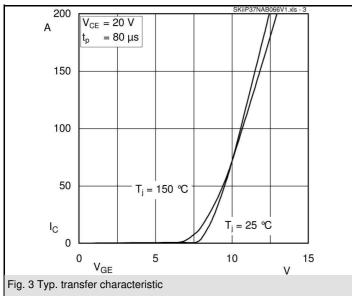

- Trench IGBT
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

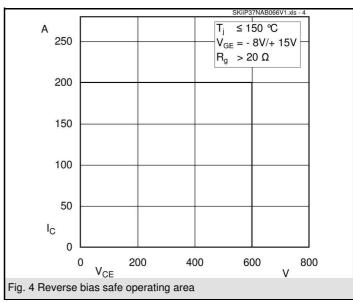
Typical Applications*

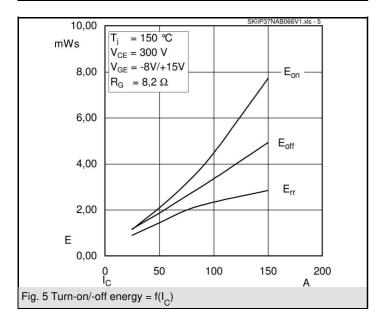
- Inverter up to 18 kVA
- Typical motor power 7,5 kW

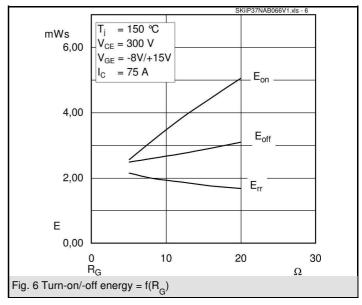

Remarks

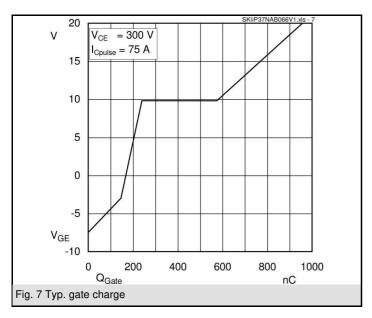

- Case temperature limited to T_C =
- · Product reliability results are valid for $T_i = 150$ °C
- SC data: $t_p \le 6$ s; $V_{GE} \le 15$ V; T_j = 150°C, V_{CC} = 360 V V_{CEsat} , V_F = chip level value

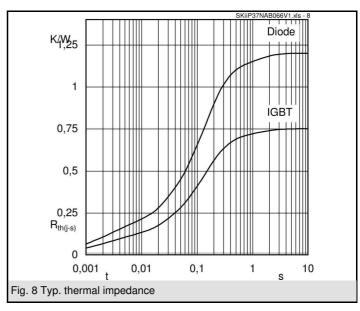



Absolute Maximum Ratings T _S = 25 °C, unless otherwise specified								
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V_{CES}		600	V					
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	79 (53)	Α					
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	88 (65)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	150	Α					
V_{GES}		± 20	V					
Diode - Inverter								
I _F	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	65 (42)	Α					
I _F	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 175 ^{\circ}\text{C}$	77 (56)	Α					
I _{FRM}	t _p = 1 ms	150	Α					
Diode - Rectifier								
V_{RRM}		800	V					
I _F	T _s = 70 °C	61	Α					
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	700	Α					
i²t	t_p = 10 ms, sin 180 °, T_j = 25 °C	2400	A²s					
I _{tRMS}	per power terminal (20 A / spring)	80	Α					
T _i	IGBT, Diode	-40+175	°C					
T _{stg}		-40+125	°C					
V _{isol}	AC, 1 min.	2500	V					

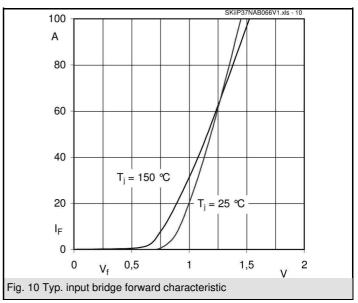

Character	istics	T _S	_S = 25 °C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units			
IGBT - Inverter									
V _{CE(sat)} V _{GE(th)}	I_{Cnom} = 75 A, T_j = 25 (150) °C V_{GE} = V_{CE} , I_C = 1 mA		1,05	1,45 (1,65) 5,8	1,85 (2,05)	V V			
V _{CE(TO)}	T _j = 25 (150) °C			0,85 (0,7)	1,1 (1)	V			
r_{CE}	$T_j = 25 (150) ^{\circ}C$			8 (12,7)	10 (14)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$			4,4		nF –			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$			0,78		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$			0,66		nF			
R _{CC'+EE'}	spring contact-chip T _s = 25 (150)°C					mΩ			
$R_{th(j-s)}$	per IGBT			0,75		K/W			
t _{d(on)}	under following conditions			115		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -8\text{V}/+15\text{V}$			45		ns			
$t_{d(off)}$	I _{Cnom} = 75 A, T _j = 150 °C			475		ns			
t _f	$R_{Gon} = R_{Goff} = 8.2 \Omega$			60		ns			
$E_{on} \left(E_{off} \right)$	inductive load			2,7 (3)		mJ			
Diode - In	verter								
$V_F = V_{EC}$	I _F = 75 A, T _i = 25 (150) °C			1,5 (1,5)	1,7 (1,7)	V			
$V_{(TO)}$	T _j = 25 (150) °C			1 (0,9)	1,1 (1)	V			
r _T	T _j = 25 (150) °C			6,7 (8)	8 (9,3)	mΩ			
$R_{th(j-s)}$	per diode			1,2		K/W			
I _{RRM}	under following conditions			52		Α			
Q_{rr}	I _{Fnom} = 75 A, V _R = 300 V			8		С			
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 150^{\circ}\text{C}$			1,8		mJ			
	$di_{F}/dt = 1480 \text{ A/ s}$								
Diode - Rectifier									
V_{F}	I _{Fnom} = 35 A, T _i = 25 °C			1,1		V			
$V_{(TO)}$	T _i = 150 °C			0,8		V			
r _T	$T_{j} = 150 ^{\circ}\text{C}$			11		mΩ			
$R_{th(j-s)}$	per diode			0,9		K/W			
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C			1000(1670)		Ω			
Mechanical Data									
w				97		g			
M_s	Mounting torque		2		2,5	Nm			

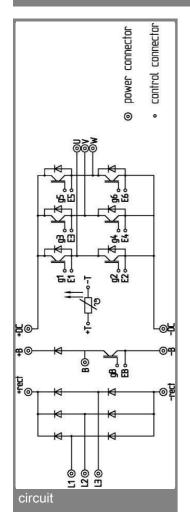


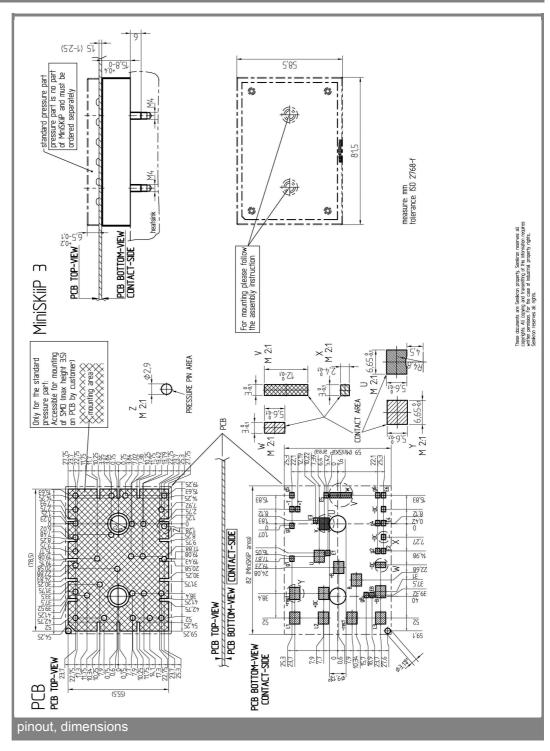












3 27-11-2007 SEN © by SEMIKRON

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.