1. ESD Protection ..2
2. General Sequence of Mounting Steps ..2
3. Printed Circuit Board Specifications ..2
4. Mounting the Printed Circuit Board ..3
 4.1 Press-in Process ..3
 4.2 Press-out Process ...3
 4.3 Additional Fixation ...3
 4.4 Soldering ..4
5. Surface Specifications ..4
6. Applying Thermal Paste ...5
7. Mounting to the Heat Sink ..5
8. Creepage and Clearance Distances ..6
9. Mounting to the Main Terminals ...6

Keyword: Mounting Instruction SEMIX press-fit
1. **ESD Protection**

SEMiX press-fit modules are sensitive to electrostatic discharge (ESD), because discharge of this kind can damage or destroy the devices. SEMiX modules are ESD protected in the shipment box by conductive plastic trays. When handling and assembling the modules it is recommended to wear a grounded wrist strap and to use a grounded workplace. All staff shall be trained for correct ESD handling.

2. **General Sequence of Mounting Steps**

It is recommended to mount the printed circuit board onto the module at first. Second step is the application of thermal paste, in case the option of pre-printed phase-change material is not used. Finally the subassembly of module and driver board is mounted onto the heat sink.

3. **Printed Circuit Board Specifications**

The following recommendations for printed circuit boards (PCB) do not constitute a complete set of design rules. The responsibility for proper design remains with the user of SEMiX press-fit modules.

- PCB material: FR4
- PCB thickness: min. 1.5 mm
- Specification of holes according to Fig. 1
- Safety zone of 5mm from each pin to any component for the contact areas of the SEMIKRON press-in tool (see chapter 3.1 Press-in Process) or according distance in case an own tool is developed

Figure 1: PCB Specification

![PCB Specification Diagram]

<table>
<thead>
<tr>
<th>Surface</th>
<th>Final Hole Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemical tin (Sn)</td>
<td>1.05 ±0.03 mm</td>
</tr>
<tr>
<td>HAL tin (Sn)</td>
<td>1.0 ±0.01 mm</td>
</tr>
</tbody>
</table>
4. Mounting the Printed Circuit Board

4.1 Press-in Process
The main principle of the press-in technique is the bigger latitude of the press-in zone than of the PCB hole. By the press-in process a plastic deformation of the pin results, ensuring a gas-tight and low-ohmic resistance. Only small insertion forces are necessary with high holding forces at the same time.

The press-fitting can be done by using a toggle lever press or a machine. SEMIKRON offers 3D CAD models of a suitable press-in tool as design help for a customer’s tool (see Fig. 2). These may be requested at the local sales contact. For a constant quality a machine that logs applied force and covered distance is recommended.

During the press-in process the levels of PCB, module and press need to be parallel to each other. Best results are achieved by a continuous movement during the complete cycle.

To press a single pin into the PCB requires a force in the range of 50 N to 70 N. The force depends on the hole diameter. With holes at the lower limit of the specified tolerance (see Fig. 1) or several modules mounted at the same time press-in forces may be higher. The upper limit of the press has to be adjusted to 100 N per pin, to avoid damage of the module respectively the pin.

Standard IEC 60352-5 gives a press-in speed of 25mm/min. As usual production equipment offers speeds from 220 mm/min upwards the recommendation is to use 420 mm/min, where proper results were achieved during tests.

Figure 2: Toggle lever press with press-in tool

4.2 Press-out Process
The tool to disassemble modules from the PCB is similar to the press-in tool. Again 3D CAD models can be provided to assist in development. Same application notes as mentioned above are applicable here. The recommended press-out speed and necessary force are equal to or less than for the press-in process.

A SEMiX press-fit module which was pressed in and then pressed out cannot be pressed in again. The plastic deformation of the press-fit pin does not allow further press-fitting. In this case the module can be connected safely with the PCB by soldering (see section 4.4).

4.3 Additional Fixation
It is necessary to fix the PCB on the module with four additional screws, especially in vibrating applications. SEMIKRON recommends the following type of self-tapping screws: EJOT-DELTA-PT, WN5451, Torx-Plus, A2K, 2,5x10 mm (www.ejot.de)

When using an electrical screw driver, a screwing speed of 300 rpm and soft torque limitation is recommended, to avoid damage of the housing. SEMIKRON disadvises against pneumatic screw drivers,
due to clutch behavior with torque overshoots. Manual tightening is not allowed, as screwing speed is not sufficient to melt the housing material for forming the thread.

With a speed of 300rpm and the above mentioned screw type, the following torque was defined:

\[M = 0.9 \text{ Nm} \pm 0.1 \text{ Nm} \]

With slower/faster speed the necessary torque for a planar contact of PCB and bearing housing areas might be higher/lower, due to the characteristics of the housing material.

The depth of the screw in the module has to be between min. 6.0 mm and max. 10.0 mm, respectively 8.0 mm ± 2.0 mm. The number of times a driver may be assembled and disassembled strongly depends on the screw surface and mounting torque.

4.4 Soldering

Like mentioned in section 4.2 the PCB needs to be soldered to the module if the module is connected for a second time, i.e. if the press-fit function has already been used. SEMIKRON recommends solder of the type Sn\(_{95.5}\)Ag\(_{3.8}\)Cu\(_{0.7}\) for this. In case the press-fit pin shall be soldered already in first use (e.g. if a module with solder pins is replaced), a different recommendation for the holes than in Fig. 1 is valid (see. Fig. 3).

![Figure 3: PCB Specification for soldering the press-fit pin in first use](image)

Figure 3: PCB Specification for soldering the press-fit pin in first use

- Solder pad: 2.3 mm ± 0.1 mm
- Finished hole size: 1.5 mm ± 0.1 mm

5. Surface Specifications

To obtain the maximum thermal conductivity, the bottom side of the module must be free of grease and particles. It is recommended to clean the mounting surface with lint-free wipes and a fat-dissolving solvent (e.g. isopropyl alcohol). Furthermore, to ensure long-term reliable electrical contacts the press-fit pins have to be kept clean at all times and should never be touched by hand.

The heat sink must fulfill the following specifications (Fig. 4):

- Unevenness of heat sink mounting area must be \(\leq 50 \mu\text{m} \) per 100 mm (DIN EN ISO 1101)
- Roughness "Rz" \(\leq 10 \mu\text{m} \) (DIN EN ISO 4287)
- No steps > 10 \(\mu\text{m} \) (DIN EN ISO 4287)
- The heat sink must be free from grease and particles
- Tap holes must be free of turnings
- It is recommended to clean the surface with lint-free wipes and a fat-dissolving solvent (e.g. isopropyl alcohol)
6. Applying Thermal Paste

A thin homogenous layer of thermal paste has to be applied onto the heat sink surface or the bottom side of the module. A layer thickness of 50 µm – 100 µm is recommended and can be determined by using a wet film wheel as shown in Fig. 5. SEMIKRON recommends following pastes:
- silicone paste: P12 from WACKER CHEMIE (www.wacker.com)
- none-silicone paste: HTC from ELECTROLUBE (www.electrolube.com)

Stencil printing is suggested to apply thermal paste, but a hard rubber roll might be suitable as well. Attention has to be paid that no screw holes are polluted by thermal paste.

Further information about applying thermal interface material can be found in Application Note AN 18-001.

Figure 5: Wet film wheel

ZWW2102, Zehntner Testing Instruments (www.zehntner.com)

7. Mounting to the Heat Sink

SEMIKRON recommends M5 screws of strength category 8.8. The usage of washers is not necessary. To comply with creepage and clearance distances it is suggested to check the resulting distances according to the relevant standards (DIN EN 50178, DIN EN 61800-5-1) when selecting a screw type (see also chapter 0: Creepage and clearance distances).

The SEMiX has to be placed on the matching heat sink area. Then the four screws have to be pre-tightened with max. 1.0 Nm, following a crosswise mounting sequence (Fig. 6). Finally the mounting torque M_s (as given in the data sheet) has to be applied, again crosswise: min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm.

When using an electrical screw driver, screwing speed has to be limited to a maximum of 300 rpm and soft torque limitation is recommended, to ensure a homogenous distribution of the thermal paste layer. SEMIKRON disadvises against pneumatic screw drivers, due to clutch behavior with torque overshoots.
The optional usage of pre-applied phase-change material does not change the preceding instructions (see also document *Technical Explanation Thermal Interface Materials*).

8. Creepage and Clearance Distances

SEMIKRON press-fit modules comply with the creepage and clearance distances required in DIN EN 50178 for the following boundary conditions:
- Maximum peak voltage: 1700V
- Maximum DC-link voltage: 1380V
- Line over-voltage category: 3
- Pollution degree: 2
- Maximum height of operation above sea level: 4000m
- Basic insulation of temperature sensor
- Comparative Tracking Index (CTI) of the housing: Class IIIb (100 ≤ CTI < 175)

Table 1: Typical creepage and clearance distances

<table>
<thead>
<tr>
<th>Creepage</th>
<th>Terminal to terminal</th>
<th>13.0mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terminal to base plate</td>
<td>14.8mm</td>
</tr>
<tr>
<td>Clearance</td>
<td>Terminal to terminal</td>
<td>10.4mm</td>
</tr>
<tr>
<td></td>
<td>Terminal to heat sink</td>
<td>9.9mm</td>
</tr>
</tbody>
</table>

9. Mounting to the Main Terminals

SEMIKRON recommends M6 screws of strength category 8.8. The effective length of the screw in the module has to be between min. 7.0 mm and max. 8.0 mm, respectively 7.5 mm ± 0.5 mm. The mounting torque M_t has to be between min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm. The driver bit shall be as short as possible to avoid uncontrolled and tilted screwing.

SEMIKRON recommends M6 screws of strength category 8.8. The effective length of the screw in the module has to be between min. 7.0 mm and max. 8.0 mm, respectively 7.5 mm ± 0.5 mm. The mounting torque M_t has to be between min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm. The driver bit shall be as short as possible to avoid uncontrolled and tilted screwing.

SEMIKRON recommends M6 screws of strength category 8.8. The effective length of the screw in the module has to be between min. 7.0 mm and max. 8.0 mm, respectively 7.5 mm ± 0.5 mm. The mounting torque M_t has to be between min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm. The driver bit shall be as short as possible to avoid uncontrolled and tilted screwing.

SEMIKRON recommends M6 screws of strength category 8.8. The effective length of the screw in the module has to be between min. 7.0 mm and max. 8.0 mm, respectively 7.5 mm ± 0.5 mm. The mounting torque M_t has to be between min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm. The driver bit shall be as short as possible to avoid uncontrolled and tilted screwing.

SEMIKRON recommends M6 screws of strength category 8.8. The effective length of the screw in the module has to be between min. 7.0 mm and max. 8.0 mm, respectively 7.5 mm ± 0.5 mm. The mounting torque M_t has to be between min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm. The driver bit shall be as short as possible to avoid uncontrolled and tilted screwing.

SEMIKRON recommends M6 screws of strength category 8.8. The effective length of the screw in the module has to be between min. 7.0 mm and max. 8.0 mm, respectively 7.5 mm ± 0.5 mm. The mounting torque M_t has to be between min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm. The driver bit shall be as short as possible to avoid uncontrolled and tilted screwing.

SEMIKRON recommends M6 screws of strength category 8.8. The effective length of the screw in the module has to be between min. 7.0 mm and max. 8.0 mm, respectively 7.5 mm ± 0.5 mm. The mounting torque M_t has to be between min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm. The driver bit shall be as short as possible to avoid uncontrolled and tilted screwing.

SEMIKRON recommends M6 screws of strength category 8.8. The effective length of the screw in the module has to be between min. 7.0 mm and max. 8.0 mm, respectively 7.5 mm ± 0.5 mm. The mounting torque M_t has to be between min. 3.0 Nm and max. 6.0 Nm, respectively 4.5 Nm ± 1.5 Nm. The driver bit shall be as short as possible to avoid uncontrolled and tilted screwing.
The height x of the supporting stands should be slightly lower (~0.5mm) than the height y of the power terminals, to bring a loading force to the terminals.

Figure 7: Maximum forces at the main terminals

- $F_{z+} \leq 200$ N
- $F_{x+} \leq 200$ N
- $F_{y+} \leq 200$ N
- $F_{z-} \leq 800$ N
- $F_{x-} \leq 200$ N
- $F_{y-} \leq 200$ N

Figure 8: Proposed set-up for stress relief ($x \leq y$)

- $F_{z+} \leq 200$ N
- $F_{x+} \leq 200$ N
- $F_{y+} \leq 200$ N
HISTORY
SEMIKRON reserves the right to make changes without further notice herein

DISCLAIMER
SEMIKRON reserves the right to make changes without further notice herein to improve reliability, function or design. Information furnished in this document is believed to be accurate and reliable. However, no representation or warranty is given and no liability is assumed with respect to the accuracy or use of such information, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the application or use of any product or circuit described herein. Furthermore, this technical information may not be considered as an assurance of component characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. This document supersedes and replaces all information previously supplied and may be superseded by updates without further notice.

SEMIKRON products are not authorized for use in life support appliances and systems without the express written approval by SEMIKRON.