SKiM®63/93
IGBT Modules

Technical Explanations

Version 1.52 / September 2017

Anastasia Schiller
Content
1 Introduction .. 3
 1.1 Features... 3
 1.2 Advantages and Benefits.. 3
2 Technical Details of SKiM ... 5
 2.1 Mechanical Design ... 5
 2.2 Electrical Behaviour ... 6
 2.3 Sinter Process .. 8
 2.4 Protected Springs ... 9
 2.5 Creepage and Clearance Distances ... 9
 2.6 Isolation Measurement .. 10
 2.7 Chip Positions ... 11
 2.8 Thermal Material Data .. 12
 2.9 Pressure Force on the Heat Sink .. 13
3 Chip Technologies and Product Ranges ... 14
 3.1 IGBT Chip Technologies and Product Range ... 14
 3.2 Safe Operating Area for IGBTs ... 16
 3.3 Surge Current Characteristics of CAL Diodes .. 17
 3.4 Selection Guide ... 17
4 Thermal Resistances .. 18
 4.1 Measuring Thermal Resistance $R_{th(j-a)}$.. 18
 4.2 Transient Thermal Impedance ... 18
5 Integrated Temperature Sensor Specifications .. 20
 5.1 Electrical Characteristic ... 20
 5.2 Electrical Isolation ... 22
6 Spring Contact System Specifications ... 23
 6.1 Spring and Contact Specifications .. 23
 6.2 PCB Specifications (Landing Pads for Springs) .. 23
 6.3 Storage Conditions .. 23
 6.4 Stray Inductance of Contact Springs .. 24
7 Reliability .. 26
 7.1 Standard Tests for the Qualification of SKiM Modules .. 26
 7.2 Reliability of Spring Contacts ... 27
 7.3 Reliability of SKINTER Layer ... 28
8 Design Recommendations for SKiM .. 30
 8.1 Printed Circuit Board Design ... 30
 8.2 Paralleling SKiM IGBT Modules .. 33
 8.3 DC Link Bus Bars, Snubber Capacitors .. 35
9 Marking ... 36
 9.1 “Passed” marking on housing ... 36
 9.2 Laser Marking for Modules ... 36
 9.3 Data Matrix Code .. 37
10 Bill of Materials .. 38
11 Packing Specifications ... 39
 11.1 ESD COVER .. 39
 11.2 Packing Boxes .. 40
 11.3 Marking of Packing Boxes ... 40
12 Provisions and handling after use .. 41
13 Type Designation System ... 42
14 Figure Captions in the Datasheets ... 43
15 Disclaimer .. 43
1 Introduction

SKiM was introduced at PCIM Europe 2007 as SEMIKRON’s new product line for highly reliable IGBT modules made specifically for automotive applications. SKiM is available in two package sizes: SKiM 63 (cf. Fig. 1-1) and SKiM 93 (Fig. 1-2).

1.1 Features

SKiM modules feature a pressure-contact low-profile housing that boasts the following advantages:
- 100 % solder-free module, Pb-free
- Solder-free driver assembly with no additional wiring or connectors
- Spring contacts for auxiliary contacts
- Separate AC, DC terminals and control unit
- 17 mm main terminal height

1.2 Advantages and Benefits

The chips inside SKiM modules are sintered not soldered, thereby achieving a very high power cycling capability. Fig. 1-3 shows the comparison between a SKiM and a standard soldered module. The sinter joint is a thin silver layer whose thermal resistance is superior to that of a soldered joint. Due to the high melting point of silver (960 °C), no joining fatigue occurs, resulting in an increased service life.
The above-mentioned features allow for a compact, flat and low-inductance inverter design. Direct driver assembly provides optimum IGBT controllability and eliminates noise on gate wires or loose connectors.

For further information on SKiM please refer to:

- P. Beckedahl, T. Grasshoff und M. Lederer; *A new power module concept for automotive applications*; PCIM Nuremberg; May 2007
- C. Daucher; *100% solder-free IGBT Module*; PCIM Nuremberg; May 2007
2 Technical Details of SKiM

The SKiM module is designed as a highly reliable module that meets the demands of automotive applications in terms of shock and vibration stability, as well as high temperature capability and service life.

Today, state-of-the-art IGBT modules are based on a solder construction: the chips are soldered to a substrate and this substrate is soldered to a base plate. Investigations have shown, however, that these solder layers constitute the weakness of any module since they demonstrate fatigue when exposed to active and passive temperature cycling.

In consequence, SEMIKRON eliminates solder joints. A strategy that has been pursued by SEMIKRON since 1992 when SKiiP technology was first introduced: the first pressure-contact IGBT power module with pressure-contact main terminals and no base plate. SKiM modules from SEMIKRON are the first ever 100% solder-free IGBT modules.

2.1 Mechanical Design

SKiM (Fig. 2-1) is based on the well-established SKiiP technology. This means the Al₂O₃ DBC (direct bonded copper) substrate is pressed directly onto the heat sink without the use of a base plate.

The pressure is induced by a pressure part on top, which is screwed to the heat sink. This pressure is transferred to the three main terminals (plus, minus and AC), as shown in Fig. 2-2. These main terminals constitute a low-inductance sandwich construction and transfer the pressure to the above-mentioned DBC substrate. The pressure is applied across several contact points (cf. Fig. 2-3) beside every single chip. As a result, a very low thermal and ohmic resistance R_{CC+EE} is achieved.
The chips themselves are sintered, not soldered. The sintering is based on pulverised silver which forms a material connection when pressure and temperature is applied. (cf. section 2.3)

Contact springs are used for all of the auxiliary contacts (gate, auxiliary emitter and temperature sensor). These spring contacts allow for solder-free connection of the driver PCB.

2.2 Electrical Behaviour

In a high-power module with paralleled chips, the switching behaviour and the resulting derating is important.

Current Distribution

The current distribution between silicon chips is affected mainly by the parasitic stray inductances and the difference in these inductances between the chips. Two design features influence these parasitic stray inductances: first the layout of the chips on the substrate and hence the commutation behaviour between IGBT and diode; second the internal design of the main terminals.

Influence of the chip distribution on the DBC

If the DBC layout is not symmetric (e.g. as shown in Fig. 2-4) the commutation paths of the different currents have different parasitic inductances, leading to different currents, losses and, ultimately, temperatures in the different chips (cf. Fig. 2-5). To prevent individual chips from overheating, derating is necessary.
SKiM® - Technical Explanations

The SKiM DBC layout (Fig. 2-3) is largely symmetric and has symmetric inductances in the current paths (Fig. 2-6). The commutation behaviour across all chips is therefore very even (Fig. 2-7) and derating is not necessary.

Influence of the internal main terminal design

The bus bar system in SKiM modules, as shown in Fig. 2-2, has a very low stray inductance (\(L_{CE} < 10 \) nH). Every single chip is connected symmetrically (cf. Fig. 2-3). This leads to similar stray inductances for the individual chips, resulting in a homogeneous current distribution.

Measurements (Fig. 2-8) have verified a homogenous internal current distribution. The voltage drop across a single chip is an indicator for the current through this chip. In Fig. 2-8, it can be seen that the voltage drops at three different chip positions on the substrate, as well as at the position of the auxiliary emitter are nearly identical, indicating a very homogenous current distribution.

There is a difference between the internal voltages and the current at the outer +/- terminals, resulting from the voltage drop between the chips positions and the main terminals.

Comparison: Top versus Bottom IGBT
Besides even current distribution between paralleled chips, the symmetry in switching between top and bottom IGBT in a half bridge configuration is also important in terms of derating. This means if the two IGBTs switch differently, the IGBT with higher losses will limit the module as a whole. Thanks to the symmetric DBC layout in SKiM modules (cf. Fig. 2-3, Fig. 2-9 and Fig. 2-11), the switching behaviour of the bottom and the top IGBT is virtually identical, as shown in Fig. 2-10 and Fig. 2-12. Derating is therefore not necessary.

For further information on optimisations in SKiM processes, please refer to:
A.Wintrich, P. Beckedahl, T.Wurm ; “Electrical and thermal optimization of an automotive power module family”;
Proceedings Automotive Power Electronics; Paris; October 2007

2.3 Sinter Process
For the SKiM product line SEMIKRON improved the sinter process for silver powder to enable it to be used in series production. This “SKiNTER” process replaces chip soldering and results in very high degree of joint reliability.
The SKiNTER process works as follows: the silver powder is printed to the DBC substrate. Then the chips are placed onto this silver layer. The joint is created by applying heat (< 250°C) and pressure. Though the SKiNTER process temperature is far below the melting point of silver (960 °C), the final joint is stable up to this temperature.
The following table Tab. 2-1 shows a comparison between the SKiINTER process and soldering.

<table>
<thead>
<tr>
<th></th>
<th>SKiINTER process</th>
<th>Soldering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joining temperature</td>
<td>< 250°C</td>
<td>200 – 380°C</td>
</tr>
<tr>
<td>Layer thickness</td>
<td>15 – 20 µm</td>
<td>typical 70 – 150 µm</td>
</tr>
<tr>
<td>Formation of voids</td>
<td>no</td>
<td>possible</td>
</tr>
<tr>
<td>Connection layer</td>
<td>homogeneous</td>
<td>inhomogeneous</td>
</tr>
<tr>
<td>Melting temperature</td>
<td>960 °C</td>
<td>< 380 °C</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>240 W/(m·K)</td>
<td>70 W/(m·K)</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>41 m/(Ω·mm²)</td>
<td>8 m/(Ω·mm²)</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>19 10⁻⁶ m/K</td>
<td>28 10⁻⁶ m/K</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>55 MPa</td>
<td>30 MPa</td>
</tr>
</tbody>
</table>

Tab. 2-1 Comparison between sintering and soldering

For further information on the SKiINTER process, please refer to:
- C. Göbl, P. Beckedahl, H. Braml; "Low temperature sinter technology Die attachment for automotive power electronic applications"; Automotive Power Electronics; June 2006

2.4 Protected Springs

When the SKiM is not mounted to the heat sink and the pressure part is not pressed down, the springs for the auxiliary contacts are protected inside the module (Fig. 2-13). Fig. 2-14 shows a SKiM module after mounting. The pressure part is pressed down and the spring heads appear at the surface.

![Fig. 2-13 SKiM 93: before mounting the auxiliary springs are invisible](image)

![Fig. 2-14 SKiM: the springs appear after mounting](image)

2.5 Creepage and Clearance Distances

All SKiM IGBT modules comply with the mandatory creepage and clearance distances in accordance with EN 50178 for
- Grid voltage = 690 V, line to line, grounded delta
- Nominal voltage = 1700 V (DC link voltage = 1250 V)
- Basic isolation
- Pollution degree 2
- Comparative Tracking Index “CTI” value of the case < 400
The following values are complied with:

<table>
<thead>
<tr>
<th>Description</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creepage distance from main terminal to main terminal</td>
<td>≥ 14 mm</td>
</tr>
<tr>
<td>Clearance distance from main terminal to main terminal</td>
<td>≥ 5.8 mm</td>
</tr>
<tr>
<td>Creepage distance from any terminal to heat sink potential</td>
<td>≥ 8.3 mm</td>
</tr>
<tr>
<td>Clearance distance from any terminal to heat sink potential</td>
<td>≥ 8.0 mm</td>
</tr>
<tr>
<td>Creepage distance on the PCB from landing pad to landing pad</td>
<td>≥ 6.3 mm</td>
</tr>
</tbody>
</table>

Tab. 2-2 Creepage and clearance distances for SKiM

“From terminal to terminal” means for main and auxiliary terminals between high-voltage potentials, not between terminals with small differences in voltage potential, e.g. gate and emitter contacts (± 20 V) or between the contacts for the temperature sensor.

In the case of “1700 V applications” SEMIKRON recommends the use of “low profile screws” with a maximum screw head height of 2.8 mm. For 1200 V all of the distances are met with standard screws (4 mm head height) as given in the mounting instructions. The following sketches (Fig. 2-15 and Fig. 2-16) show the distances without screws.

Inside the housing, the DBC substrate is coated with a silicone gel for electrical isolation. The gel has an isolation capability > 20 kV/mm.

2.6 Isolation Measurement

The specified isolation voltage is given in the data sheets. In the course of production, this isolation voltage is verified with a 100% test according to the DIN EN 50178 standard (VDE 0160).

The isolation measurement is performed in two steps:
During the first measurement all main and auxiliary terminals (including main, auxiliary emitter, gate and temperature sensor contacts) are short circuited and measured against the base plate.
In the second measurement stage the main and auxiliary terminals (including main, auxiliary emitter, gate contacts) are short circuited, as are the base plate and the temperature sensor contacts. The voltage $V_{measurement}$ is then applied between these two circuits.
2.7 Chip Positions

For detailed temperature measurements the exact positions of the chips have to be known. Inside SKiM modules, the chips are always located in the same positions, regardless of the chip size. The drawings Fig. 2-20 and Fig. 2-21 show the chip positions measured from the centre of the bottom left screw hole.

Fig. 2-17 IGBT Chips
Fig. 2-18 Diode Chip
Fig. 2-19 Temperature Sensor

Fig. 2-20 Chip positions in SKiM 63
Fig. 2-21 Chip positions in SKiM 93

2.8 Thermal Material Data

For thermal simulations it is necessary to have the thermal material parameter, as well as the typical thickness of the different layers in the package. This data is given in Tab. 2-3. For better understanding, the sketch in Fig. 2-22 shows the different layers in the package.

Fig. 2-22 Sketch of SKiM package, cross-sectional view
SKiM® - Technical Explanations

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material</th>
<th>Layer thickness [mm]</th>
<th>Spec. thermal conductivity [W/m/K]</th>
<th>Spec. thermal capacity [J/kg/K]</th>
<th>Density [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBT chip (“066”)</td>
<td>Si</td>
<td>0.07</td>
<td>124</td>
<td>750</td>
<td>2330</td>
</tr>
<tr>
<td>IGBT chip (“E4”)</td>
<td>Si</td>
<td>0.14</td>
<td>124</td>
<td>750</td>
<td>2330</td>
</tr>
<tr>
<td>IGBT chip (“17”)</td>
<td>Si</td>
<td>0.19</td>
<td>124</td>
<td>750</td>
<td>2330</td>
</tr>
<tr>
<td>Diode chip</td>
<td>Si</td>
<td>0.24</td>
<td>124</td>
<td>750</td>
<td>2330</td>
</tr>
<tr>
<td>Chip joint</td>
<td>Ag-sinter layer</td>
<td>~ 0.02</td>
<td>250</td>
<td>230</td>
<td>7350</td>
</tr>
<tr>
<td>DBC copper</td>
<td>Cu</td>
<td>0.30</td>
<td>390</td>
<td>390</td>
<td>8960</td>
</tr>
<tr>
<td>DBC ceramic</td>
<td>Al₂O₃</td>
<td>0.38</td>
<td>24</td>
<td>830</td>
<td>3780</td>
</tr>
<tr>
<td>DBC copper</td>
<td>Cu</td>
<td>0.30</td>
<td>390</td>
<td>390</td>
<td>8960</td>
</tr>
<tr>
<td>Thermal paste</td>
<td>Customer-specific</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat sink</td>
<td>Customer-specific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2.3 Material data for thermal simulations

2.9 Pressure Force on the Heat Sink

For the heat sink design it may be necessary to know what force is applied by the SKiM module. This information is given in Tab. 2-4. The sketch in Fig. 2-23 shows how the values in Tab. 2-4 are to be understood.

<table>
<thead>
<tr>
<th>Pressure stress per half bridge [N/mm²]</th>
<th>SKiM 63</th>
<th>SKiM 93</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.06</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Tab. 2-4 Pressure forces produced by SKiM modules

Fig. 2-23 Sketch of SKiM 63, bottom view
3 Chip Technologies and Product Ranges

3.1 IGBT Chip Technologies and Product Range

SKiM IGBT modules are available with 600 V, 1200 V and 1700 V IGBTs.

Design Principles

IGBT chips are based on two different main design principles. The first is related to the gate structure: trench or planar gate, while the second relates to the IGBT technology used: punch through ("PT") or non-punch through ("NPT").

The planar gate is a cost-effective structure based on doping processes and produces a horizontal gate structure (Fig. 3-3). The sophisticated trench gate, in comparison, is based on a combination of doping, etching and filling processes. The trench process leads to a very efficient, vertical gate structure and allows for small chip sizes (Fig. 3-4), which in turn allow for compact module design. Despite this, the smaller chip sizes lead to higher thermal resistance at the same time.

The term “Punch-Through” describes the shape of the electric field inside the IGBT during blocking state. As shown in Fig. 3-1, the electric field punches through the n’ layer into the n layer. Inside the n’ layer the field is steeper than in the n layer. Thanks to this, the PT-IGBT can be thinner than an NPT-IGBT (Fig. 3-2) and the overall losses are lower.

In the past, PT-IGBTs were made of "epitaxial" material and had a negative temperature coefficient for the forward voltage drop $V_{CE(sat)}$, making paralleling very difficult. State-of-the-art "Soft-Punch Through" and "Field Stop" PT-IGBTs, however, have a positive temperature coefficient and allow for parallel use.

Trench IGBT

The "Trench IGBT" chip design is based on a trench-gate structure combined with a "Field Stop" n’ buffer layer for punch through feature, as shown in Fig. 3-4. With the introduction of the 4th generation, this general design was not changed, but the trade-off between the on-state losses $V_{CE(sat)}$ and the switching losses $E_{on}+E_{off}$ was optimised for operation with switching frequencies above 4 kHz. Furthermore, the "IGBT4" is able to operate with a maximum junction temperature $T_{j,max} = 175$ °C. The increased $T_{j,max}$ offers more flexibility in overload conditions or for applications with few temperature cycles (e.g. pumps or fans) where the junction temperature might now exceed the former limits.
For further information on “IGBT4”, please refer to:

Inverse and Freewheeling Diodes

The free-wheeling diodes used in SKiM IGBT modules are specially optimized CAL (Controlled Axial Lifetime) diodes, or HD CAL (High Density CAL) diodes. These fast, “super soft” planar diodes are characterised by the optimal axial profile of the charge carrier life-time.

This leads to:
- Low peak reverse current lowering the inrush current load on the IGBTs in bridge circuits.
- A "Soft" decrease in the reverse current across the entire operating temperature range, which minimizes switching surges and interference.
- A robust performance even when switching at high di/dt.
- Very good paralleling capability thanks to the negligible negative temperature coefficient and the small forward voltage V_F spread.

Compared with CAL diodes, HD CAL diodes display reduced forward voltages at negligible higher switching losses and an almost invariant forward voltage temperature coefficient.

SEMIKRON’s newly developed “CAL4” diode is designed specifically for use with the “IGBT4” generation. This new device boasts low thermal losses and outstanding soft switching behaviour even at extreme commutation speeds. Further, the newly developed junction termination ensures safe operation up to 175 °C.

For further information on CAL4, please refer to:
3.2 Safe Operating Area for IGBTs

Safe Operating Areas are not included in the datasheets. They are given as standardized figures. These figures apply to 600 V, 1200 V and 1700 V.

Safe Operating Area

IGBT modules must not be used in linear mode.

Reverse Bias Safe Operating Area

The maximum V_{CES} value must never be exceeded. Due to the internal stray inductance of the module, a small voltage will be induced during switching. The maximum voltage at the terminals $V_{CEmax,T}$ must therefore be smaller than V_{CEmax} (see dotted line in Fig. 3-6). This value can be calculated using the formula (3-1) given below. The value for $t(I_C)$ can be taken from figure 7 of the data sheets.

$$V_{CEmax,T} = V_{CES} - L_{CE} \times \left[\frac{I_C \times 0.8}{t(I_C)} \right]$$

(3-1)
Short Circuit Safe Operating Area

The number of short circuits must not exceed 1000. The time between short circuits must be > 1 s. The duration time of the short circuit pulse \(t_{psc} \) is limited. Please refer to the maximum values for \(t_{psc} \) given in the data sheet.

![SOA-SEMiX.xls](https://example.com/soa-ssemix.xls)

![Fig. 3-7 Short Circuit Safe Operating Area (SCSOA)](https://example.com/fig37.png)

3.3 Surge Current Characteristics of CAL Diodes

When the CAL diode operates as a rectifier diode in an “IV-Q” application, it is necessary to know the ratio of the permissible overload on-state current \(I_{F(OV)} \) to the surge on-state current \(I_{FSM} \) as a function of the load period \(t \) and the ratio of \(V_R / V_{RRM} \). \(V_R \) denotes the reverse voltage applied between the sinusoidal half waves. \(V_{RRM} \) is the peak reverse voltage.

![IFSM-CAL-Diode.xls](https://example.com/ifsm-caldiode.xls)

![Fig. 3-8 Surge overload current vs. time](https://example.com/fig38.png)

3.4 Selection Guide

The correct choice of the IGBT module depends very much on the application itself. A lot of different parameters and conditions have to be taken into account: \(V_{in}, I_{in}, V_{out}, I_{out}, f_{switch}, f_{out}, \) overload, load cycles, cooling conditions, etc. Due to this variety of parameters a simplified selection guide is not seriously feasible.

For this reason SEMIKRON offers the selection, calculation and simulation tool “SEMISEL” under http://semisel.semikron.com/. Almost all design parameters can be edited for various input or output conditions. Different cooling conditions can be chosen and specific design needs can be effectively determined.

![IFM-CAL-Diode.xls](https://example.com/ifm-caldiode.xls)
4 Thermal Resistances

4.1 Measuring Thermal Resistance $R_{th(j-s)}$

The thermal resistance is defined as given in the following equation (4-1)

$$R_{th(1-2)} = \frac{\Delta T}{P_v} = \frac{T_1 - T_2}{P_v}$$ \hspace{1cm} (4-1)

The data sheet values for the thermal resistances are based on measured values. As can be seen in equation (4-1), the temperature difference ΔT has a major influence on the R_{th} value. As a result, the reference point and the measurement method have a major influence, too.

Since SKiM modules have no base plate, the typical case temperature (T_c) and hence the $R_{th(j-c)}$ value cannot be given. Instead, SEMIKRON gives the thermal resistance between the junction and the heat sink $R_{th(j-s)}$. This value depends largely on the thermal paste. Thus, the value is given as a "typical" value in the data sheets.

SEMIKRON measures the $R_{th(j-s)}$ of SKiM modules on the basis of the reference points given in Fig. 4-1. The reference points are as follows:

- T_j - The junction of the chip
- T_s - The heat sink temperature is measured in a drill hole, 2 mm beneath the module, directly under the chip. The 2 mm is derived from our experience, which has shown that at this distance from the DBC ceramic, parasitic effects resulting from heat sink parameters (size, thermal conductivity etc.) are at a minimum and the disturbance induced by the thermocouple itself is negligible.

![Fig. 4-1 Location of reference points for Rth measurement as used for SKiM](image)

For further information on the measurement of thermal resistances, please refer to:

4.2 Transient Thermal Impedance

When switching on a "cold" module, the thermal resistance R_{th} appears smaller than the static value as given in the data sheets. This phenomenon occurs due to the internal thermal capacities of the package (cf. Fig. 2-22). These thermal capacities are "uncharged" and will be charged with the heating energy resulting from the losses during operation. In the course of this charging process the R_{th} value seems to increase. During this time it is therefore called transient thermal impedance Z_{th}. When all
thermal capacities are charged and the heating energy has to be emitted to the ambience, the transient thermal resistance Z_{th} will have reached the static data sheet value R_{th}.

The advantage of this behaviour is the short-term overload capability of the power module.

![Fig. 4-2 Transient Thermal Impedance](image)

The transient thermal behaviour is measured during SEMIKRON's module approval process. On the basis of this measurement a mathematical model is derived, resulting in the following equation (4-2):

$$Z_{th}(t) = R_1 \left(1 - e^{-\frac{1}{\tau_1}}\right) + R_2 \left(1 - e^{-\frac{1}{\tau_2}}\right) + R_3 \left(1 - e^{-\frac{1}{\tau_3}}\right)$$

(4-2)

For SKiM modules, the coefficients R_1, τ_1, and R_2, τ_2 can be determined using the data sheet values as given in Tab. 4-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>IGBT, CAL diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>[K/W]</td>
<td>$0.11 \times R_{th,j-s}$</td>
</tr>
<tr>
<td>R_2</td>
<td>[K/W]</td>
<td>$0.77 \times R_{th,j-s}$</td>
</tr>
<tr>
<td>R_3</td>
<td>[K/W]</td>
<td>$0.12 \times R_{th,j-s}$</td>
</tr>
<tr>
<td>τ_1</td>
<td>[sec]</td>
<td>1.0</td>
</tr>
<tr>
<td>τ_2</td>
<td>[sec]</td>
<td>0.13</td>
</tr>
<tr>
<td>τ_3</td>
<td>[sec]</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Tab. 4-1 Parameters for $Z_{th,j-c}$ calculation using equation (4-2)
5 Integrated Temperature Sensor Specifications

All SKiM IGBT modules feature a temperature-dependent resistor for temperature measurement. The resistor is sintered onto the same DBC ceramic substrate near the IGBT and diode chips and reflects the actual case temperature. Every single half bridge has its own temperature sensor. For the exact locations of these sensors, please refer to Fig. 2-20 and Fig. 2-21.

Since the cooling conditions have a significant influence on the temperature distribution inside SKiM modules, it is necessary to evaluate the dependency between the temperatures of interest (e.g. chip temperature) and the signal from the integrated temperature sensor.

5.1 Electrical Characteristic

The temperature sensor has a nominal resistance of 5 kΩ at 25 °C. The measuring current should be 1 mA; the maximum value is 3 mA.

The built-in temperature sensor in SKiM is a resistor with a negative temperature coefficient (NTC). Its characteristic is given in Fig. 5-1

A mathematical approximation (in the range from 80 °C to 150 °C) for the sensor resistance as a function of temperature R(T) is given by:

\[
R(T) = R_{100} \times \exp[B_{100/125} \times (1/T - 1/T_{100})]
\]

With

\[
R_{100} = 339 \, \Omega
\]

\[
B_{100/125} = 4096 \, K
\]

\[
T_{100} = 100 \, °C = 373.15 \, K
\]

\[
R(T) = 339 \, \Omega \times \exp[4096 \times (1/T - 1/373.15 \, K)]
\]

Fig. 5-1 Typical characteristic of the NTC temperature sensor (included in every SKiM half bridge)
Fig. 5-2 Characteristic of the NTC temperature sensor with tolerances

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Resistance Value [kΩ] minimum</th>
<th>standard [kΩ]</th>
<th>maximum [kΩ]</th>
<th>Tolerance maximum deviation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>147.237</td>
<td>168.105</td>
<td>188.972</td>
<td>12.4</td>
</tr>
<tr>
<td>-30</td>
<td>78.766</td>
<td>88.454</td>
<td>98.141</td>
<td>11.0</td>
</tr>
<tr>
<td>-20</td>
<td>43.908</td>
<td>48.555</td>
<td>53.202</td>
<td>9.6</td>
</tr>
<tr>
<td>-10</td>
<td>25.394</td>
<td>27.581</td>
<td>29.987</td>
<td>8.3</td>
</tr>
<tr>
<td>0</td>
<td>15.180</td>
<td>16.326</td>
<td>17.471</td>
<td>7.0</td>
</tr>
<tr>
<td>10</td>
<td>9.335</td>
<td>9.947</td>
<td>10.559</td>
<td>6.2</td>
</tr>
<tr>
<td>20</td>
<td>5.910</td>
<td>6.245</td>
<td>6.581</td>
<td>5.4</td>
</tr>
<tr>
<td>30</td>
<td>3.813</td>
<td>4.029</td>
<td>4.245</td>
<td>5.4</td>
</tr>
<tr>
<td>40</td>
<td>2.504</td>
<td>2.664</td>
<td>2.824</td>
<td>6.0</td>
</tr>
<tr>
<td>50</td>
<td>1.682</td>
<td>1.802</td>
<td>1.921</td>
<td>6.6</td>
</tr>
<tr>
<td>60</td>
<td>1.153</td>
<td>1.243</td>
<td>1.333</td>
<td>7.2</td>
</tr>
<tr>
<td>70</td>
<td>0.807</td>
<td>0.875</td>
<td>0.943</td>
<td>7.8</td>
</tr>
<tr>
<td>80</td>
<td>0.576</td>
<td>0.628</td>
<td>0.679</td>
<td>8.3</td>
</tr>
<tr>
<td>90</td>
<td>0.418</td>
<td>0.458</td>
<td>0.497</td>
<td>8.7</td>
</tr>
<tr>
<td>100</td>
<td>0.308</td>
<td>0.339</td>
<td>0.370</td>
<td>9.1</td>
</tr>
<tr>
<td>110</td>
<td>0.232</td>
<td>0.255</td>
<td>0.279</td>
<td>9.2</td>
</tr>
<tr>
<td>120</td>
<td>0.176</td>
<td>0.195</td>
<td>0.213</td>
<td>9.4</td>
</tr>
<tr>
<td>130</td>
<td>0.136</td>
<td>0.151</td>
<td>0.165</td>
<td>9.6</td>
</tr>
<tr>
<td>140</td>
<td>0.106</td>
<td>0.118</td>
<td>0.129</td>
<td>9.8</td>
</tr>
<tr>
<td>150</td>
<td>0.084</td>
<td>0.093</td>
<td>0.102</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Tab. 5-1 Resistance values and tolerance
5.2 Electrical Isolation

Inside SKiM modules the temperature sensors are mounted close to the IGBT and diode dice onto the same substrate. The minimum distance between the copper conductors is = 0.80 ± 0.2 mm. (Fig. 5-3)

According to EN 50178 (VDE 0160), this design does not provide "Safe Electrical Insulation", because the temperature sensor inside the SKiM module might be exposed to high voltages during semiconductor short-circuit failure mode. After electrical overstress the bond wires could melt off, producing an arc with high-energy plasma in the process (as shown in Fig. 5-4). In this case the direction of plasma expansion is unpredictable and the temperature sensor might come into contact with the plasma.

The safety grade "Safe Electrical Insulation" in accordance with EN 50178 can be achieved by different additional means, which are described in this standard in more detail.

Please note: To ensure that electrical isolation V_{isol} as stated in the data sheets is provided, suitable measurements are performed during the production process. These are described in section 2.6.
6 Spring Contact System Specifications

6.1 Spring and Contact Specifications

<table>
<thead>
<tr>
<th>Rating / Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Copper: DIN 2076-CuSn6 With silver surface: Abrasiveness 75 to 95 HV, tarnish protection < 0.1 µm</td>
</tr>
<tr>
<td>Contact force</td>
<td>3 to 5 N</td>
</tr>
</tbody>
</table>
| Maximum contact resistance including ageing | - 200 mΩ (current ≤ 1A)
 - 25 mΩ (current > 1A) | For one spring tested according to IEC 600068-2-43 (10 days, 10 ppm H2S, 75 % RH, 25°C) |

Tab. 6-1 Specifications for SKiM contact springs

6.2 PCB Specifications (Landing Pads for Springs)

<table>
<thead>
<tr>
<th>Rating / Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. Sn (Chemical deposition)</td>
<td>no min. thickness</td>
</tr>
<tr>
<td>HAL Sn (Hot Air Levelling)</td>
<td>no min. thickness</td>
</tr>
<tr>
<td>NiAu</td>
<td>Ni ≥ 3µm, Au ≥ 20nm (Electro less nickel, immersion gold)</td>
</tr>
<tr>
<td>SnPb</td>
<td>no min. thickness</td>
</tr>
</tbody>
</table>

Tab. 6-2 Specifications for the surface metallization of landing pads for SKiM contact springs

6.3 Storage Conditions

<table>
<thead>
<tr>
<th>Rating / Specification</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Unassembled | 28 month / 60 °C 95% RH
 (max. storage time of module is 18 month and limited by pre-applied thermal paste) |
| Assembled | 28 month / 60 °C 95% RH |

Tab. 6-3 Storage conditions for SKiM modules with silver-plated contact springs
6.4 Stray Inductance of Contact Springs

The spiral springs look like the coils of an inductor. This would seem to contradict one of the main requirements in power electronics: “low inductance”. In measurements, however, these springs have not been shown to have any influence on switching behaviour. The following calculations verify the results obtained in practice.

In this respect, the SKiM module, which features springs and PCB tracks between the driver and the springs, is comparable with a SEMITRANS module, which has internal wiring and wiring between driver and module.

6.4.1 Self-Inductance of the Spring Connection

\[
L_{Sp} = \frac{\mu \cdot n^2 \cdot \pi \cdot D^2}{4 \cdot \sqrt{l^2 + D^2}}
\]

\[
\mu = \mu_0 = 1.26 \ \mu H/m
\]

\[
l = 11.5 \ \text{mm (length, spring under pressure)}
\]

\[
D = 1.5 \ \text{mm (inner diameter)}
\]

\[
n = 20 \ (\text{number of coils})
\]

\[
L_{SP} = 77 \text{nH}
\]

Inductance PCB tracks \(L_{PCB} \)

\[
L_{PCB} = \frac{1.2 \cdot \mu}{\pi} \cdot \ln \left(1 + \frac{a}{d + b} \right)
\]

\[
\mu = \mu_0 = 1.26 \ \mu H/m
\]

\[
l = 100 \ \text{mm (length spring pad to driver output stage)}
\]

\[
a = 0.5 \ \text{mm (distance between conductors on PCB)}
\]

\[
d = 50 \ \mu m (\text{thickness of copper layer})
\]

\[
b = 1 \ \text{mm width of the copper track}
\]

Total: \(L_{Sp+PCB} = 108 \ \text{nH} \)

6.4.2 Self-Inductance of a SEMITRANS Module

Fig. 6-3 Open SEMITRANS 3 module. Yellow and red wires are gate and emitter wires, respectively

Fig. 6-4 SEMITRANS 3 module: wire connections to driver
Inductance inside of the module L_{W_1}

$$L_{W_1} = \frac{l_1 \cdot \mu}{\pi} \cdot \ln\left(\frac{2 \cdot a}{d}\right)$$

- $\mu = \mu_0 = 1.26 \, \mu\text{H/m}$
- $l_1 = 50 \, \text{mm}$ (wire length inside the module)
- $a = 3 \, \text{mm}$ (distance between wires)
- $d = 0.5 \, \text{mm}$ (wire diameter)

$L_{W_1} = 50\,\text{nH}$

Inductance outside of the module L_{W_2}

$$L_{W_2} = \frac{l_2 \cdot \mu}{\pi} \cdot \ln\left(\frac{2 \cdot a}{d}\right)$$

- $\mu = \mu_0 = 1.26 \, \mu\text{H/m}$
- $l_2 = 100 \, \text{mm}$ (wire length outside the module)
- $a = 3 \, \text{mm}$ (distance between wires)
- $d = 0.5 \, \text{mm}$ (wire diameter)

$L_{W_2} = 100\,\text{nH}$

Total: $L_{W_1} + L_{W_2} = 150 \, \text{nH}$

This inductance is in the same range as that of the solution with spring contacts and a PCB track.

6.4.3 Conclusion and Discussion

Since the values for the parasitic inductances of SKiM and SEMITRANS modules are in the same range, a comparison would not prove particularly useful. Instead, the influence of the stray inductance on the gate voltage is generally looked at for comparison. Fig. 6-5 shows that self-inductance in wires has virtually no effect on the switching behaviour of the power semiconductor (neither in theory nor in the measurements performed).

A voltage across the gate wire inductance is induced only at the beginning when the gate voltage is applied. This voltage is far below the threshold voltage $V_{GE(th)}$. When the voltages rise to within the range of the threshold voltage where the switching event starts, the voltages are similar for all inductances. A small effect on the delay time during switching can be seen; in the example given in Fig. 6-5 this delay is around 20 ns for the highest assumed value of 300 nH. For higher gate resistor values this small difference disappears entirely.

![Fig. 6-5 Influence of stray inductance on the gate voltage (model: voltage rise V_{GE} at a capacitor C_G for different circuit inductances L) ($C_{ies} = Q_0 / V_G = 1 \, \mu\text{C} / 23 \, \text{V} = 43 \, \text{nF}, R_G = 4 \, \Omega, \Delta V_{GE} = 23 \, \text{V}$) (L = 10 nH, L = 150 nH, L = 300 nH, V_{GE(th)})](image-url)
7 Reliability
7.1 Standard Tests for the Qualification of SKiM Modules

The objectives of the test program (refer to Tab. 7-1) are:
1. Assure the general product quality and reliability.
2. Evaluate design limits by stressing under a variety of testing conditions.
3. Ensure the consistency and predictability of the production processes.
4. Appraise process and design changes regarding their effect on reliability.

<table>
<thead>
<tr>
<th>Reliability Test</th>
<th>Standard Test Conditions for SKiM IGBT Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature Reverse Bias (HTRB) IEC 60747</td>
<td>1000 h, VCE = 95 % VCEmax, Tc = 160 °C</td>
</tr>
<tr>
<td>High Temperature Gate Bias (HTGB) IEC 60747</td>
<td>1000 h, ± VGEmax, T = 175 °C</td>
</tr>
<tr>
<td>High Humidity High Temperature Reverse Bias (THB) IEC 60068-2-67</td>
<td>1000 h, 85 °C, 85 % RH, VCE = 80 % VCEmax, VCEmax, max. 80 V, VGE = 0 V</td>
</tr>
<tr>
<td>High Temperature Storage (HTS) IEC 60068-2-2</td>
<td>1000 h, + 135 °C</td>
</tr>
<tr>
<td>Low Temperature Storage (LTS) IEC 60068-2-1</td>
<td>1000 h, - 40 °C</td>
</tr>
<tr>
<td>Thermal Cycling (TC) IEC 60068-2-14 Test Na</td>
<td>500 cycles, - 40 °C to + 125 °C</td>
</tr>
<tr>
<td>Power Cycling (PC) IEC 60749-34</td>
<td>25,000 load cycles, ΔTj = 110 K</td>
</tr>
<tr>
<td>Vibration IEC 60068-2-6 Test Fc</td>
<td>Sinusoidal sweep, 10g, 2 h per axis (x, y, z)</td>
</tr>
<tr>
<td>Mechanical Shock IEC 60068-2-27 Test Ea</td>
<td>Half sine pulse, 100g, 3 times each direction (±x, ±y, ±z)</td>
</tr>
</tbody>
</table>

Tab. 7-1 SEMIKRON standard qualification tests
7.2 Reliability of Spring Contacts

The SKiM spring contact for the auxiliaries is a solder-free contact. It can therefore be compared with other solder-free contacts such as screw terminals or plug connectors. In Fig. 7-1 these “connections” are compiled for comparison.

<table>
<thead>
<tr>
<th>Screwed main terminals</th>
<th>Plug connectors</th>
<th>Spring contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure force</td>
<td>Pressure force</td>
<td>Pressure force</td>
</tr>
<tr>
<td>typ. 50 N/mm²</td>
<td>typ. 10 N/mm²</td>
<td>typ. 20 - 100 N/mm²</td>
</tr>
</tbody>
</table>

Fig. 7-1 Comparison of not soldered electrical connections

The surface materials for the spring contacts as given in Tab. 6-1 and Tab. 6-2 (silver-plated spring and, for example, tin surface for PCB landing pads) are based on “state-of-the-art” knowledge as gained from long-term experience with plug connectors and SEMIKRON’s long-term experience with spring connections. Compared to a plug connector, the spring contact has a far greater pressure and contact force, which accounts for the superior reliability of this connection.

To verify this reliability, several harsh tests were performed on the spring contacts: temperature cycling, temperature shock tests, fretting corrosion (= micro vibration), electromigration, and a corrosive atmosphere test in accordance with IEC 60068-2-43:

- **Atmosphere:** 10 ppm H₂S
- **Temperature:** 25 °C
- **Relative humidity:** 75 %
- **Volume flow:** > volume x 3 per hour
- **Duration:** 10 days
- **No current load during storage**

All of these tests were passed successfully and demonstrated the outstanding reliability of SEMIKRON’s spring contacts.

It goes without saying that SKiM modules passed all SEMIKRON standard reliability tests as given in Tab. 7-1.

For further information on the reliability of spring contacts, please refer to:

7.3 Reliability of SKiNTER Layer

In power semiconductor modules different materials with different coefficients of thermal expansion are soldered together. Owing to this material bond, the layers cannot expand and release freely when temperature changes occur, the result being thermally induced mechanical stress. The longer the joint, the more stress is induced and the more fatigue occurs.

The illustrations in Fig. 7-2 and Fig. 7-3 show the package of different materials. Based on the materials shown in Tab. 7-2, temperature differences \(T - T_{\text{sink}} \) are given as resulting under similar operating conditions in these packages. With the coefficient of thermal expansion \(\alpha \) the elongation ratio \(\Delta L / L_0 \) induced by the thermal expansion inside the package is calculated by equation

\[
\frac{L - L_0}{L_0} = \frac{\Delta L}{L_0} = \alpha \cdot (T - T_{\text{sink}})
\]

The materials cannot, of course, expand freely. Thus the difference of the figures for the theoretical expansion is an indicator for the resulting thermally induced stress in the bonding layer between these materials.

<table>
<thead>
<tr>
<th>Standard IGBT module</th>
<th>SKiM module</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T - T_{\text{sink}}) in K</td>
<td>(T - T_{\text{sink}}) in K</td>
</tr>
<tr>
<td>Silicon</td>
<td>69.0</td>
</tr>
<tr>
<td>Substrate</td>
<td>54.4</td>
</tr>
<tr>
<td>Base plate</td>
<td>36.9</td>
</tr>
</tbody>
</table>

Tab. 7-2 Temperatures and thermal expansion for packages as shown in Fig. 7-2 and Fig. 7-3

The fatigue in the joint layers can be seen in the increase in thermal resistance. The increase in thermal resistance causes the chip temperature to increase too, because the output power remains unchanged. The increase in chip temperature in turn leads to an increase of \(T - T_{\text{sink}} \), leading to even more stress in the layers and accelerating the fatigue.

Solder layers, in particular, demonstrate aging as described above. This is due to the fact that the operation temperature of the module (125 °C to 150 °C) is very close to the melting temperature of the solder (220 °C to 250 °C), making the solder layer weak. With the SKINTER layer the operation temperature is far below the melting point of silver (960 °C). In turn, the SKINTER technology does not display this accelerated fatigue.

Practical investigations have verified the theoretical considerations. Fig. 7-4 shows the results of power cycling tests with soldered and sintered IGBT modules. The solder layer fatigue and the accelerated aging process lead to an increase in thermal resistance and module failure after 40 000 cycles.

The thermal resistance of the sintered layer does not increase. Modules in SKINTER technology boast a >30% longer service life and improved reliability.
For further information on the reliability of solder-free IGBT modules, please refer to:

8 Design Recommendations for SKiM

The following recommendations are tips only and do not constitute a complete set of design rules. The responsibility for proper design remains with the user of the SKiM modules.

8.1 Printed Circuit Board Design

8.1.1 PCB Specification

Recommendations for the printed circuit board:

- “FR 4” material can be used as a material for the printed circuit board.
- The thickness of copper layers should comply with IEC 326-3.
- The landing pads must not contain plated-through holes (“VIA”) to prevent contact deterioration. In the remaining area VIAs can be used as desired.
- The landing pads for the auxiliary contacts must have a diameter of $\Omega = 3.5$ mm ± 0.2 mm.
- As stated in section “PCB Specifications (Landing Pads for Springs)”, pure tin (Sn) is an approved interface for use with SKiM spring contacts. Sufficient plating thickness must be guaranteed in accordance with the PCB manufacturing process. The tin surface is normally applied to the PCB chemically or in a hot-air levelling process.

A second approved surface for the landing pads is electro-less nickel with a final immersion gold layer (Ni + Au).

Not recommended for use are boards with “organic solder ability preservative” (OSP) passivation, because OSP is not suitable for guaranteeing long-term corrosion-free contact. The OSP passivation disappears during soldering or after approximately 6 months of storage.

- During the solder processes the landing pads for SKiM spring contacts need to be covered and protected from contamination. This is particularly crucial for wave soldering. No residue of the cover material must be left on the landing pads as this could lead to deterioration of the electrical contact in the long term.

8.1.2 PCB Alignment Support

SKiM offers a special alignment support for the printed circuit board and makes the assembly “poka yoke proof”. (For PCB mounting please refer to the mounting instructions)

As shown in Fig. 8-1 SKiM has three guide pins. Thanks to these pins, the PCB can be easily placed on the module. There is no pin in the fourth corner. Only one method of assembly is possible if the PCB is shaped with three notches as shown in Fig. 8-2 and Fig. 8-3.

The SKiM also has two alignment rings, which are used to put the PCB in position irrespective of the guiding pins.

For detailed case drawings please refer to the data sheet.

Fig. 8-1 SKiM with 3 x guiding pins and 2 x alignment rings, pressure part in pressed down position.
8.1.3 PCB Outline, Location of Landing Pads

The following drawings show the outline of a PCB for SKiM 63 (Fig. 8-2) and for SKiM 93 (Fig. 8-3). The drawings show:

- The outer dimensions of the PCB itself
- The location and dimensions of the drill holes
- The location and dimensions of the landing pads

Please note: the layout of the landing pads for SKiM 63 and SKiM 93 is the same. Only the width of the PCB and the location of the drill holes for mounting is different.

![Diagram](Image)

Fig. 8-2 Landing pads layout for SKiM 63 (bottom view)
8.1.4 General Design Rules

The following general design rules should be taken into account when developing an IGBT driver circuit:

- To suppress interference in the gate signals, magnetic coupling of any kind between the main current and the gate circuits has to be avoided. This can be achieved, for example, by using short gate and emitter connections, whose tracks should be led parallel and very close to each other, i.e. “no open loops”. Furthermore, the tracks should be in line with the main magnetic field = 90° to the main current flow I_C.

- IGBT modules need to be turned off by a negative gate voltage V_{GEoff}. Otherwise unwanted switch-on via Miller capacitance C_{res} may occur.

- For short-circuit switch-off, a soft-switch-off circuit in the gate drive circuit (e.g. increased R_{Goff}) is recommended to decrease the voltage overshoots in this particular case. SEMIKRON’s SKYPER® PRO offers this feature.

8.1.5 Gate Clamping

To ensure that the gate voltage V_{GE} does not exceed the maximum value stated in the data sheet, the use of an appropriate gate clamping circuit (e.g. two anti-serial Z-diodes D_{GE}, $V_Z = 16$ V, as shown in Fig. 8-4) is recommended. This circuit has to be placed as close to the auxiliary contacts as possible.

It is necessary to ensure that the IGBT is always in a defined state, especially in cases where the driver is not able to deliver a defined gate voltage V_{GE}. A suitable solution to this problem is to use a resistor between gate and emitter R_{GE} (≈ 20 kΩ).
This circuit is meant as an addition to the circuit shown in Fig. 8-8

8.1.6 Connection of Unused Springs for GAL and GAR Types
SKiM modules are always equipped with all auxiliary springs (as shown in Fig. 8-5) regardless of which circuit is inside. This means landing pads as given in Fig. 8-2 and Fig. 8-3 are necessary in any case. For GAL and GAR types the unused springs (marked red in Fig. 8-6 and Fig. 8-7) must be put on a defined voltage potential - normally 0 V. Otherwise displacement currents might lead to disturbance.

8.2 Paralleling SKiM IGBT Modules
When paralleling SKiM IGBT modules it is necessary to provide gate signal decoupling as well as homogeneous and low-inductance AC and DC connections.

8.2.1 Paralleling of Gate and Emitter Connections
For optimum and smooth switching behaviour for all paralleled IGBTs it is necessary to ensure decoupling of the gate signals. For this reason every single gate needs its own gate resistor $R_{G,x}$ ($\geq 2 \Omega$), as shown in Fig. 8-8.
Paralleled IGBT modules and half bridges must be controlled by one driver. When using single drivers, there is no way of ensuring that all IGBTs switch simultaneously, meaning that the current distribution between these modules will not be even.
Furthermore, in Fig. 8-8 resistors $R_{E,x} \geq 0.5 \, \Omega$ can be seen at every emitter contact. These resistors are also necessary to ensure homogeneous switching of the paralleled IGBTs. Additionally, these resistors dampen cross currents in the network resulting from main and auxiliary emitter paralleling. The additional Shottky diode (100 V, 1 A) parallel to $R_{E,x}$ ensures the safe turn-off of high currents (e.g. if a short-circuit occurs).

To achieve similar parasitic inductances and homogeneous switching behaviour, the conductor lengths from the supply point to the individual gate and emitter connections should have the same length for all paralleled IGBTs.

![Diagram](image)

8.2.2 Main Terminal Paralleling

For optimum current distribution it is necessary for all parasitic stray inductances to be the same for every module. The same loop length for all connections is a good indicator for the same inductance. Fig. 8-9 shows an optimised AC connection: the length from all module terminals to the output is the same and all terminals are shorted very close to the module, keeping them on the same voltage potential.

(Note: an additional mechanical support is recommended to prevent excessive mechanical forces at the terminals – refer also to the mounting instructions)

The same rules apply to the DC connection. Here, the point of supply from the rectifier should also be central and not from one side. This ensures very similar stray inductances at the DC terminals, too.

![Diagram](image)
8.3 DC Link Bus Bars, Snubber Capacitors

Due to stray inductances in the DC link, voltage overshoots as shown in Fig. 8-10 occur during IGBT switch-off (caused by the energy which is stored in the stray inductances). These voltage overshoots may destroy the IGBT module because they are added to the DC link voltage and may lead to $V_{CE} > V_{CES}$.

First of all, the stray inductances have to be reduced to the lowest possible limit. This includes the low-inductance DC link design, as well as the use of low-inductance DC link capacitors. The use of snubber capacitors with a very low stray inductance, a low “ESR” Equivalent Series Resistance and a high “IR” Ripple Current Capability is recommended.

![Diagram](image)

$$\Delta V_1 = L_{\text{stray-snubber}} \times \frac{di_C}{dt}$$

$$\Delta V_2 = \frac{L_{\text{stray-DC-bus}} \times i_C^2}{C_{\text{snubber}}}$$

- i_C = Operating current
- $\frac{di_C}{dt}$ = During switch-off
- V_{CC} = DC link voltage

![Fig. 8-10 Voltage overshoots as caused by parasitic inductances](image)

Furthermore, a pulse capacitor as snubber (see Fig. 8-11 and Fig. 8-12) should be placed between the +/- DC terminals of the SKiM. This snubber works as a low-pass filter and “takes over” the voltage overshoot.

Typical values for these capacitors are from 0.1 µF to 1.0 µF. Proper measurements should be performed to ensure that the right snubber is selected.

![Fig. 8-11 Recommended snubber capacitor type.](image) ![Fig. 8-12 Non-recommended snubber (too high a stray inductance).](image)

For further information on snubber capacitors, please refer to:

9 Marking

9.1 “Passed” marking on housing

Pre-assembled housings are 100% in-line tested. A “passed” test result will be marked with a black dot.

9.2 Laser Marking for Modules

All SKiM modules are laser marked. The marking contains the following items (see Fig. 9-1):

1. SEMIKRON logo, with product line designation “SKiM®”
2. Data Matrix Code (refer also to section “Data Matrix Code”)
3. Type designation, for details refer to section "Type Designation System"
4. SEMIKRON order code
5. Date code – 5 digits: YYML (L = Lot of same type per week) The date code might be followed by
 ♦ “R” if the module is in accordance with the RoHS directive
 ♦ “E” for engineering samples

Fig. 9-1 Typical laser marking of SKiM module
9.3 Data Matrix Code

The Data Matrix Code is described as follows:
- **Type:** ECC 200
- **Standard:** ISO / IEC 16022
- **Cell size:** 0.3 mm
- **Field size:** 26 x 26
- **Dimension:** 8 x 8 mm plus a guard zone of 1 mm (circulating)
- The following data is coded:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKiM909GD066HD</td>
<td>23930790</td>
<td>0DE050091001</td>
<td>1</td>
<td>5</td>
<td>0006</td>
<td>10100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 16 digits Type designation
2. 1 digit Blank
3. 10 digits Part number
4. 12 digits Production tracking number
5. 1 digit Blank
6. 1 digit Measurement number

<table>
<thead>
<tr>
<th>Line</th>
<th>Identifier</th>
<th>Production</th>
<th>Part</th>
<th>Continuous</th>
<th>Blank</th>
<th>Date</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1 digit</td>
<td>Line identifier (production)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1 digit</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4 digits</td>
<td>Continuous number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1 digit</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5 digits</td>
<td>Date code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 53 digits maximum
10 Bill of Materials

The SKiM modules “SKiM 63” and “SKiM 93” are both made from materials listed in Tab. 10-1.

<table>
<thead>
<tr>
<th>Component</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure part</td>
<td>Polyamide 66 + 35% glass fibre, UL-V0 (does not contain free halogens) with injection-moulded steel plate (zinc plated)</td>
</tr>
<tr>
<td>Spring rubber plate</td>
<td>Cellular silicone</td>
</tr>
<tr>
<td>Bus bar isolation foils</td>
<td>Polyethylene terephthalate PET</td>
</tr>
<tr>
<td>Bus bars</td>
<td>Copper, with silver surface and tarnish protection</td>
</tr>
<tr>
<td>Contact springs</td>
<td>Copper alloy CuSn6 (DIN ISO 2076) with silver surface and tarnish protection</td>
</tr>
<tr>
<td>Injection-moulded inserts</td>
<td>Brass</td>
</tr>
<tr>
<td>Injection-moulded bushes</td>
<td>Steel zinc plated</td>
</tr>
<tr>
<td>Housing</td>
<td>Polybutylene terephthalate PBT + 30 % glass fibre (does not contain free halogens)</td>
</tr>
<tr>
<td>Power hybrid</td>
<td></td>
</tr>
<tr>
<td>✦ Substrate</td>
<td>Copper, Aluminium Oxide (Al₂O₃), Copper. Nickel metallization and gold finish is applied to the copper surface.</td>
</tr>
<tr>
<td>✦ Wire bonds</td>
<td>Aluminium alloy</td>
</tr>
<tr>
<td>✦ Chips and T-Sensor</td>
<td>Silicon (Si) with aluminium metallization on the upper and silver metallization on the underside</td>
</tr>
<tr>
<td>✦ Chip sinter layer</td>
<td>Silver (Ag)</td>
</tr>
<tr>
<td>✦ Coating</td>
<td>Silicone Gel</td>
</tr>
</tbody>
</table>

Tab. 10-1 SKiM – Bill of materials
Note: SEMIKRON products are not subject to the electrical and electronic equipment law (ElektroG). Nevertheless, SEMIKRON still produces the product family SKiM® in accordance with §5 of the ElektroG (prohibited substances) as well as article 4 of the directive 2002/95/EC of the European parliament (RoHS) on the restriction of the use of certain hazardous substances in electrical and electronic equipment. The ElektroG is the German legal equivalent of the European directive.

11 Packing Specifications

11.1 ESD COVER

Against electrostatic discharge (ESD) while transport, the SKiM is protected by an ESD cover. The ESD Cover is shown in Fig. 12-1.

![ESD COVER](image)
11.2 Packing Boxes
Standard packing boxes for SKiM modules:

Fig. 11-2 Cardboard box with SKiM in transparent ESD tray, dimensions: 580 x 360 x 110 mm³ (l x w x h)

Quantities per package
SKiM 63 16 pcs
SKiM 93 8 pcs

Weight per package ≤ 14 kg

Bill of materials
Boxes: Paper (card board)
Trays: ASK-PET/56 (not electrically chargeable)

11.3 Marking of Packing Boxes
All SKiM packing boxes contain a sticker label.

This label is placed on the packing box as shown in Fig. 11-2:

Fig. 11-2: Location of label on SKiM packing boxes
The label contains the following items (see Fig. 11-3)

1. SEMIKRON Logo
2. “Dat. Cd.”: Date code – 5 digits: YYMML (L=Lot of same type per week)
 Suffix “R” stands for “RoHS conform”
3. “Menge”: Quantity of SKiM modules inside the box – also as bar code
4. SKiM Type Designation
5. “Au.-Nr.”: Order confirmation number / Item number on order confirmation
6. “Id.-Nr.”: SEMIKRON part number – also as bar code
7. ESD sign: SKiM IGBT modules are sensitive to electrostatic discharges. Always ensure the environment is ESD proof before removing the ESD packaging and handling the modules.

Bar code according to
* Standard: ECC 200
* Format: 19/9

12 Provisions and handling after use

Components which are obsolete or defective must be disposed according to local regulations
13 Type Designation System

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKiM</td>
<td>40</td>
<td>6</td>
<td>GD</td>
<td>06</td>
<td>6</td>
<td>HD</td>
<td></td>
</tr>
</tbody>
</table>

1 SKiM: Product name

2 Nominal chip current $I_{C,nom}/10$

3 Housing size
 - 6 = SKiM 63
 - 9 = SKiM 93

4 Circuit specifications (examples)
 - GB = IGBT half bridge
 - GAL = IGBT low side chopper
 - GAR = IGBT high side chopper
 - GD = 3 ~ IGBT inverter, “six pack”

5 Voltage class
 - 06 = 600 V
 - 12 = 1200 V
 - 17 = 1700 V

6 IGBT chip technology
 - 6 = Trench IGBT 3 (600 V and 1200 V)
 - T4 = Trench IGBT 4 (1200 V) Low Loss
 - E4 = Trench IGBT 4 (1200 V) Medium Power

7 Appendix (optional)
 - HD = CAL HD Diode
 - v1, v2, ... = Exclusive, customised special version
14 Figure Captions in the Datasheets

Fig. 1 Collector current I_C as a function of the collector- emitter voltage V_{CE} (typical output characteristics) for $T_J = 25 \, ^\circ\text{C}$ and $T_J = 125 \, ^\circ\text{C}$, Parameter: Gate-emitter voltage V_{GE}; Values at terminal level, inclusive $R_{CC'} + R_{EE'}$

Fig. 2 Maximum rated continuous DC collector current I_C as a function of the case temperature T_{case}, terminal current $I_{cmax} = 600 \, \text{A}$ @ $T_{Terminal} = 100 \, ^\circ\text{C}$

Fig. 3 Typical turn-on and turn-off energy dissipation E_{on} and E_{off} of an IGBT element and turn-off energy dissipation E_r of a freewheeling diode as a function of the continuous collector current I_C for inductive load

Fig. 4 Typical turn-on and turn-off energy dissipation E_{on} and E_{off} of an IGBT element and turn-off energy dissipation E_r of a freewheeling diode as a function of the gate series resistance R_G for inductive load

Fig. 5 Typical transfer characteristic: continuous collector current I_C as a function of the gate-emitter voltage V_{GE}; Values at terminal level, inclusive $R_{CC'} + R_{EE'}$

Fig. 6 Typical gate charge characteristic: gate-emitter voltage V_{GE} as a function of the gate charge Q_G

Fig. 7 Typical IGBT switching times t_{don}, t_r, t_{doff} and t_f as a function of the continuous collector current I_C for inductive load and fixed gate series resistance R_G for $T_J = 125 \, ^\circ\text{C}$

Fig. 8 Typical IGBT switching times t_{don}, t_r, t_{doff} and t_f as a function of the gate series resistance R_G for inductive load and fixed collector current I_C for $T_J = 125 \, ^\circ\text{C}$

Fig. 9 Transient thermal impedance $Z_{th(j-c)}$ of the IGBT element and the diode element as single pulse expired following an abrupt change in power dissipation

Fig. 10 Typical forward characteristics of the inverse diode (typical and maximum values) for $T_J = 25 \, ^\circ\text{C}$ and $T_J = 125 \, ^\circ\text{C}$

Fig. 11 Typical peak reverse recovery current I_{RRM} of the inverse diode as a function of the fall rate dI_F/dt of the forward current with corresponding gate series resistance R_G of the IGBT during turn-on

Fig. 12 Typical recovery charge Q_r of the inverse diode as a function of the fall rate dI_F/dt of the forward current (Parameters: forward current I_F and gate series resistance R_G of the IGBT during turn-on)

15 Disclaimer

SEMIKRON reserves the right to make changes herein without further notice to improve reliability, function or design. Information furnished in this document is believed to be accurate and reliable. However, no representation or warranty is given and no liability is assumed with respect to the accuracy or use of such information. SEMIKRON does not assume any liability arising out of the application or use of any product or circuit described herein. Furthermore, this technical information may not be considered as an assurance of component characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. This document supersedes and replaces all information previously supplied and may be superseded by updates without further notice.

SEMIKRON products are not authorized for use in life support appliances and systems without express written approval by SEMIKRON.