Thermal Resistance of Power Modules

Webinar: Everything Power Electronics
Applications Manager

- Based in Hudson, New Hampshire at SEMIKRON Inc.
- BSc Electrical Engineering Rochester Institute of Technology
- 2003 - 2006: AC Technology/Lenze
- 2007 - 2014: Design Engineer Solutions Group, SEMIKRON
- 2014 - present: Applications Manager SEMIKRON
Agenda

1. Definitions
2. Measurement methods
3. Thermal coupling
4. Derivation of values
5. Datasheets
Agenda

1. Definitions
2. Measurement methods
3. Thermal coupling
4. Derivation of values
5. Datasheets
Reference Points for R_{th}-Measurement

Cross section through a module at a heatsink:

- T_J – Junction temperature
- T_C – Case temperature in the centre of the chip positions(s)
- T_S – Heatsink temperature in a drill hole 2mm below the heatsink surface
- T_A – Inlet temperature of cooling medium

Module with baseplate

Module without baseplate
Definition of R_{th} for Baseplateless Modules

"Heatsink rated devices"
- Specification of a $R_{th(j-s)}$ including thermal grease layer
- “Typical value” because TIM layer and mounting conditions are application (customer) specific
- Datasheet should specify grease type used (thermal conductivity is given)

SKiiP 24AC12T7V1

<table>
<thead>
<tr>
<th>$R_{th(j-s)}$</th>
<th>per IGBT, $\lambda_{paste}=0.8\ W/(mK)$</th>
<th>1.12</th>
<th>K/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th(j-s)}$</td>
<td>per IGBT, $\lambda_{paste}=2.5\ W/(mK)$</td>
<td>0.93</td>
<td>K/W</td>
</tr>
</tbody>
</table>

- Wacker-Chemie P12
- SEMIKRON HPTP
“Case rated devices”

- Specification of a $R_{th(j-c)}$ “Maximum value” including deviation of products

Temperature sensor

- Path via sensor (T_r) is not a parallel heat path in the equivalent circuit! It is **one** thermal path with a different description.
- The sensor has ideally no power dissipation, that means it has the same temperature as the layer below (case or heatsink)
- Sensor behaviour is influenced by heatsink so no $R_{th(j-r)}$ is given on datasheets → see AN 20-001

\[
R_{th(j-c)} + R_{th(c-s)} + R_{th(s-a)} = R_{th(j-r)} + R_{th(r-a)}
\]
Measurement Point for Modules with Baseplate

Method 1

<table>
<thead>
<tr>
<th>Heatsink Point</th>
<th>$\Delta T_{(c-s)}$/$R_{th(c-s)}$</th>
<th>$\Delta T_{(s-a)}$/$R_{th(s-a)}$</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Used by SEMIKRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{s1}</td>
<td>higher</td>
<td>lower</td>
<td>accessible measuring point, one measurement</td>
<td>strong heatsink dependency</td>
<td>for case rated modules with release date before 2014, SEMIPACK</td>
</tr>
</tbody>
</table>

Method 2

<table>
<thead>
<tr>
<th>Heatsink Point</th>
<th>$\Delta T_{(s-a)}$/$R_{th(s-a)}$</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{s2n}</td>
<td>lower</td>
<td>higher</td>
<td>low heatsink dependency</td>
<td>special prepared heatsink, two measurements</td>
</tr>
</tbody>
</table>
Agenda

1. Definitions
2. Measurement methods
3. Thermal coupling
4. Derivation of values
5. Datasheets
Methods for Measuring Junction Temperature

Thermocouples (TC)

Infrared Camera

\[V_{CE} = f(T_j) \]

SEMIKRON preferred method
- Generation of losses and heating with direct current in a switch X: $P_X = V_X \cdot I_{DC}$
- Turning off the load current and measure the forward voltage at measurement current
- Deriving of the junction temperature from the calibration curve: $T_{jX}(av) = f(V_{X0})$
- Measurement of temperatures of ambient, heatsink and baseplate with thermocouples
- Calculation of the thermal resistances by: $R_{th(x-y)} = \Delta T_{(x-y)}/P_X$
Case and Heatsink Temperature Measurement (Multichip)

- Junction temperature measurement result is an average of the area of all chips in parallel.
- Baseplate and heatsink temperatures are position related.

Consequence: thermal resistance is position dependent.

Paradox: Measurement at the hot spot below the hottest chips results in the lowest R_{th}.

It is necessary to measure T_c and T_s below each chip and calculate an average value.
Case and Heatsink Temperature Measurement (Multichip)

<table>
<thead>
<tr>
<th></th>
<th>P [W]</th>
<th>Rth(c-s) [K/W]</th>
<th>Rth(c-s) Switch [K/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP IGBT1</td>
<td>108,7</td>
<td>0,0487</td>
<td></td>
</tr>
<tr>
<td>TOP IGBT2</td>
<td>108,7</td>
<td>0,0322</td>
<td></td>
</tr>
<tr>
<td>TOP IGBT3</td>
<td>108,7</td>
<td>0,0349</td>
<td>0,0386</td>
</tr>
<tr>
<td>BOT IGBT1</td>
<td>128,6</td>
<td>0,0396</td>
<td></td>
</tr>
<tr>
<td>BOT IGBT2</td>
<td>128,6</td>
<td>0,0303</td>
<td></td>
</tr>
<tr>
<td>BOT IGBT3</td>
<td>128,6</td>
<td>0,0459</td>
<td>0,0386</td>
</tr>
<tr>
<td>TOP Diode1</td>
<td>114,8</td>
<td>0,0366</td>
<td></td>
</tr>
<tr>
<td>TOP Diode2</td>
<td>114,8</td>
<td>0,0349</td>
<td></td>
</tr>
<tr>
<td>TOP Diode3</td>
<td>114,8</td>
<td>0,0532</td>
<td>0,0415</td>
</tr>
<tr>
<td>BOT Diode1</td>
<td>116,4</td>
<td>0,0516</td>
<td></td>
</tr>
<tr>
<td>BOT Diode2</td>
<td>116,4</td>
<td>0,0344</td>
<td></td>
</tr>
<tr>
<td>BOT Diode3</td>
<td>116,4</td>
<td>0,0421</td>
<td>0,0427</td>
</tr>
</tbody>
</table>
Agenda

1. Definitions
2. Measurement methods
3. Thermal coupling
4. Derivation of values
5. Datasheets
Heat Spreading/Thermal Coupling

Measurement 1
(IGBT only)

Measurement 2
(diode only)

In Operation
(e.g. inverter)

Thermal coupling
Datasheet Statement with $R_{th(c-s)M}$ per Module

![Diagram of power module with thermal resistances $R_{th(j-c)I}$, $R_{th(j-c)D}$, $R_{th(j-c)s}$, and $R_{th(c-s)M}$.

Legend:
- IGBT TOP
- IGBT BOT
- D TOP
- D BOT

Graph showing $R_{th(c-s)M}$ for SEMiX3 as a function of operation point.

Key:
- Full coupling
- No coupling

Values for $R_{th(c-s)M}$:
- 0.000
- 0.005
- 0.010
- 0.015
- 0.020
- 0.025
- 0.030
- 0.035
- 0.040
- 0.045
- 0.050

Operation Points:
- 1x IGBT
- 2x IGBT
- All
- 2x D
- 1x D

Legend:
- No coupling
- Full coupling
- No coupling

Note: The diagram and graph represent the thermal resistance values for different configurations of the power module.
Examples for Operation Points in Half-Bridge Module

<table>
<thead>
<tr>
<th>#</th>
<th>Example circuit</th>
<th>Power losses per IGBT and diode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example circuit</td>
<td>T TOP</td>
</tr>
<tr>
<td>1</td>
<td>Brake chopper</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Inverter operation power factor 1</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>Inverter operation power factor = -0.8....+0.8</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>Inverter operation power factor = -1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Boost converter at max. voltage</td>
<td>0</td>
</tr>
</tbody>
</table>
Datasheet Statement with $R_{th(c-s)X}$ per Switch

![Diagram showing the thermal resistance components and operation points for various configurations of IGBTs and Diodes.]

Datasheet values!
Datasheet Statement with $R_{th(c-s)}X$ per Switch

$$R_{th(c-s)M_theoretical} = \left(\frac{2}{R_{th(c-s)I}} + \frac{2}{R_{th(c-s)D}} \right)^{-1}$$

Datasheet value!
Agenda

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Definitions</td>
</tr>
<tr>
<td>2.</td>
<td>Measurement methods</td>
</tr>
<tr>
<td>3.</td>
<td>Thermal coupling</td>
</tr>
<tr>
<td>4.</td>
<td>Derivation of values</td>
</tr>
<tr>
<td>5.</td>
<td>Datasheets</td>
</tr>
</tbody>
</table>
Determination of “Coupled” $R_{th(c-s)M}$ with Finite Element Method (FEM) Simulation + Measurement

SEMIX3 $R_{th(c-s)2}$

Rth [K/W]

0,06

0,05

0,04

0,03

0,02

0,01

0,00

1 2 3 4 5

Operation points

= Measured points → Validation of FEM model
Operation Point 3

- 50Hz current source sufficient for case and heatsink temperature measurement
- Disadvantage: ratio of losses IGBT:diode not controllable

More effort but with controllable power-ratio: module in horizontal branch of a H-bridge circuit
<table>
<thead>
<tr>
<th>Agenda</th>
</tr>
</thead>
</table>

1. Definitions
2. Measurement methods
3. Thermal coupling
4. Derivation of values
5. Datasheets
SEMIKRON Datasheets for Baseplate ("Case rated") Modules

Per Switch Model

\[R_{th(j-c)I} \]
\[R_{th(c-s)I} \]

\[R_{th(j-c)D} \]
\[R_{th(c-s)D} \]

Relevant for:
- Chopper operation
- 0Hz inverter operation

Per Module Model

\[R_{th(j-c)I} \]
\[R_{th(j-c)D} \]
\[R_{th(c-s)M} \]

Relevant for:
- Typical inverter operation with IGBT losses = 40…80% of the total module losses
SEMIKRON Datasheets for Baseplate ("Case rated") Modules

$R_{th(c-s)}$ per Switch (IGBT or diode) from single switch measurements

$R_{th(c-s)}$ per Module including thermal coupling
- Based on the $R_{th(c-s)_I}$ per IGBT and $R_{th(c-s)_D}$ per diode from single switch measurements and a finite element simulation or AC measurement

$R_{th(c-s)}$ per Module without thermal coupling (theoretical value)
- Based on the $R_{th(c-s)_I}$ per IGBT and $R_{th(c-s)_D}$ per diode from single switch measurements and the number of switches n per module

\[
R_{th(c-s)M(\text{theor})} = \left(\frac{n}{R_{th(c-s)_I}} + \frac{n}{R_{th(c-s)_D}} \right)^{-1} \quad | \quad n = \text{number of switches}
\]
- Theoretical value only valid for comparison to other manufacturers datasheets, not for actual thermal calculations
Example Datasheet SEMiX press-fit (>2015)

SEMiX453GB12E4p

R\(_{th}\) per single IGBT switch:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(c-c)}) per IGBT</td>
<td>0.066</td>
<td>K/W</td>
</tr>
<tr>
<td>(R_{th(c-s)}) per IGBT ((\lambda_{grease}=0.81\ \text{W/(m*K)}))</td>
<td>0.03</td>
<td>K/W</td>
</tr>
<tr>
<td>(R_{th(c-o)}) per IGBT, pre-applied phase change material</td>
<td>0.021</td>
<td>K/W</td>
</tr>
</tbody>
</table>

R\(_{th}\) per single diode switch:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(c-c)}) per diode</td>
<td>0.1</td>
<td>K/W</td>
</tr>
<tr>
<td>(R_{th(c-s)}) per diode ((\lambda_{grease}=0.81\ \text{W/(m*K)}))</td>
<td>0.045</td>
<td>K/W</td>
</tr>
<tr>
<td>(R_{th(c-o)}) per diode, pre-applied phase change material</td>
<td>0.036</td>
<td>K/W</td>
</tr>
</tbody>
</table>

R\(_{th}\) per module:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(c-c)}) calculated without thermal coupling</td>
<td>0.009</td>
<td>K/W</td>
</tr>
<tr>
<td>(R_{th(c-s)}) including thermal coupling, Ts underneath module ((\lambda_{grease}=0.81\ \text{W/(m*K)}))</td>
<td>0.014</td>
<td>K/W</td>
</tr>
<tr>
<td>(R_{th(c-o)}) including thermal coupling, Ts underneath module, pre-applied phase change material</td>
<td>0.011</td>
<td>K/W</td>
</tr>
</tbody>
</table>

For comparison purposes only.
Considerations When Examining a Datasheet

Where is T_{sink} measured?
- Next to the module or underneath the module?

What type of thermal interface material has been used to derive the $R_{\text{th(c-s)}}$ values?

How is $R_{\text{th(c-s)}}M$ derived?
- From measurements considering thermal coupling or as a theoretical value derived from individual $R_{\text{th(c-s)}}I$ and $R_{\text{th(c-s)}}D$ in parallel?

For SEMIKRON datasheets:
- Check Technical Explanations for product line to confirm measurement location
- Check if it is an “old” (<2015) datasheet
Application References Available for Download

Application Manual:
- Available in [English](#) and [German](#)

Application Notes:
- AN-1404: Thermal resistances of IGBT Modules
- AN 20-001: Calculating Junction Temperature using a Module Temperature Sensor

Application Notes Available
Presented by Paul Drexhage

(Original presentation by Dr. Arendt Wintrich)

SEMIKRON International GmbH
Sigmundstr. 200
90431 Nuremberg
paul.drexhage@semikron.com

Contact: webinar@semikron.com